|
| 1 | +--- |
| 2 | +id: search-in-a-binary-search-tree |
| 3 | +title: Count Pairs That Form a Complete Day I |
| 4 | +sidebar_label: 3184 - Count Pairs That Form a Complete Day I |
| 5 | +tags: |
| 6 | + - Array |
| 7 | + - Hashtable |
| 8 | + - Counting |
| 9 | +description: "This is a solution to the Search in a Binary Search Tree problem on LeetCode." |
| 10 | +--- |
| 11 | +## Problem Description |
| 12 | + |
| 13 | +Given an integer array `hours` representing times in hours, return an integer denoting the number of pairs `(i, j)` where `i < j` and `hours[i] + hours[j]` forms a complete day. A complete day is defined as a time duration that is an exact multiple of 24 hours. |
| 14 | + |
| 15 | +### Example |
| 16 | + |
| 17 | +**Example 1:** |
| 18 | + |
| 19 | +``` |
| 20 | +Input: hours = [12, 12, 30, 24, 24] |
| 21 | +Output: 2 |
| 22 | +
|
| 23 | +Explanation: |
| 24 | +The pairs of indices that form a complete day are (0, 1) and (3, 4). |
| 25 | +``` |
| 26 | + |
| 27 | +**Example 2:** |
| 28 | + |
| 29 | +``` |
| 30 | +Input: hours = [72, 48, 24, 3] |
| 31 | +Output: 3 |
| 32 | +
|
| 33 | +Explanation: |
| 34 | +The pairs of indices that form a complete day are (0, 1), (0, 2), and (1, 2). |
| 35 | +``` |
| 36 | + |
| 37 | +### Constraints |
| 38 | + |
| 39 | +- `1 <= hours.length <= 100` |
| 40 | +- `1 <= hours[i] <= 10^9` |
| 41 | + |
| 42 | +## Solution Approach |
| 43 | + |
| 44 | +### Intuition |
| 45 | + |
| 46 | +To efficiently find pairs of hours that sum up to a multiple of 24, we can utilize a hash map to keep track of the remainders when the hours are divided by 24. This allows us to quickly check if there exists a previous hour that complements the current hour to form a complete day. |
| 47 | + |
| 48 | +### Algorithm |
| 49 | + |
| 50 | +1. Initialize a hash map to keep track of remainders and their counts. |
| 51 | +2. For each hour in the array: |
| 52 | + - Compute its remainder when divided by 24. |
| 53 | + - The target remainder needed to form a complete day with the current hour is `(24 - remainder) % 24`. |
| 54 | + - Check if this target remainder exists in the hash map and count the valid pairs. |
| 55 | + - Update the hash map with the current remainder. |
| 56 | +3. Return the total count of valid pairs. |
| 57 | + |
| 58 | +### Complexity |
| 59 | + |
| 60 | +- Time Complexity: $O(N)$, where N is the number of hours. |
| 61 | +- Space Complexity: $O(1)$, as the hash map will have at most 24 entries. |
| 62 | + |
| 63 | +## Solution Implementation |
| 64 | + |
| 65 | +### Code (Python): |
| 66 | + |
| 67 | +```python |
| 68 | +from collections import defaultdict |
| 69 | + |
| 70 | +def countCompleteDayPairs(hours): |
| 71 | + remainder_count = defaultdict(int) |
| 72 | + complete_day_pairs = 0 |
| 73 | + |
| 74 | + for hour in hours: |
| 75 | + remainder = hour % 24 |
| 76 | + target_remainder = (24 - remainder) % 24 |
| 77 | + complete_day_pairs += remainder_count[target_remainder] |
| 78 | + remainder_count[remainder] += 1 |
| 79 | + |
| 80 | + return complete_day_pairs |
| 81 | + |
| 82 | +``` |
| 83 | + |
| 84 | +### Code (C++): |
| 85 | + |
| 86 | +```cpp |
| 87 | +#include <vector> |
| 88 | +#include <unordered_map> |
| 89 | +using namespace std; |
| 90 | + |
| 91 | +int countCompleteDayPairs(vector<int>& hours) { |
| 92 | + unordered_map<int, int> remainder_count; |
| 93 | + int complete_day_pairs = 0; |
| 94 | + |
| 95 | + for (int hour : hours) { |
| 96 | + int remainder = hour % 24; |
| 97 | + int target_remainder = (24 - remainder) % 24; |
| 98 | + complete_day_pairs += remainder_count[target_remainder]; |
| 99 | + remainder_count[remainder]++; |
| 100 | + } |
| 101 | + |
| 102 | + return complete_day_pairs; |
| 103 | +} |
| 104 | + |
| 105 | +``` |
| 106 | +
|
| 107 | +### Code (Java): |
| 108 | +
|
| 109 | +```java |
| 110 | +import java.util.HashMap; |
| 111 | +import java.util.Map; |
| 112 | +
|
| 113 | +public class CompleteDayPairs { |
| 114 | + public int countCompleteDayPairs(int[] hours) { |
| 115 | + Map<Integer, Integer> remainderCount = new HashMap<>(); |
| 116 | + int completeDayPairs = 0; |
| 117 | + |
| 118 | + for (int hour : hours) { |
| 119 | + int remainder = hour % 24; |
| 120 | + int targetRemainder = (24 - remainder) % 24; |
| 121 | + completeDayPairs += remainderCount.getOrDefault(targetRemainder, 0); |
| 122 | + remainderCount.put(remainder, remainderCount.getOrDefault(remainder, 0) + 1); |
| 123 | + } |
| 124 | + |
| 125 | + return completeDayPairs; |
| 126 | + } |
| 127 | +} |
| 128 | +``` |
| 129 | + |
| 130 | +### Code (JavaScript): |
| 131 | + |
| 132 | +```javascript |
| 133 | +function countCompleteDayPairs(hours) { |
| 134 | + const remainderCount = new Map(); |
| 135 | + let completeDayPairs = 0; |
| 136 | + |
| 137 | + for (const hour of hours) { |
| 138 | + const remainder = hour % 24; |
| 139 | + const targetRemainder = (24 - remainder) % 24; |
| 140 | + completeDayPairs += (remainderCount.get(targetRemainder) || 0); |
| 141 | + remainderCount.set(remainder, (remainderCount.get(remainder) || 0) + 1); |
| 142 | + } |
| 143 | + |
| 144 | + return completeDayPairs; |
| 145 | +} |
| 146 | + |
| 147 | +``` |
0 commit comments