|
| 1 | +--- |
| 2 | +id: merge-k-sorted-arrays |
| 3 | +title: Merge K Sorted Arrays |
| 4 | +sidebar_label: Merge-K-Sorted-Arrays |
| 5 | +tags: |
| 6 | + - Sorting |
| 7 | + - Algorithms |
| 8 | +description: "This tutorial covers the solution to the Merge K Sorted Arrays problem from the GeeksforGeeks." |
| 9 | +--- |
| 10 | +## Problem Description |
| 11 | +Given `k` sorted arrays arranged in the form of a matrix of size `k * k`. The task is to merge them into one sorted array. Return the merged sorted array |
| 12 | + |
| 13 | +## Examples |
| 14 | + |
| 15 | +**Example 1:** |
| 16 | + |
| 17 | +``` |
| 18 | +Input: k = 3, arr[][] = {{1,2,3},{4,5,6},{7,8,9}} |
| 19 | +Output: 1 2 3 4 5 6 7 8 9 |
| 20 | +Explanation: Above test case has 3 sorted arrays of size 3, 3, 3 arr[][] = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]. The merged list will be [1, 2, 3, 4, 5, 6, 7, 8, 9]. |
| 21 | +``` |
| 22 | + |
| 23 | +**Example 2:** |
| 24 | + |
| 25 | +``` |
| 26 | +Input: k = 4, arr[][]={{1,2,3,4},{2,2,3,4},{5,5,6,6},{7,8,9,9}} |
| 27 | +Output: 1 2 2 2 3 3 4 4 5 5 6 6 7 8 9 9 |
| 28 | +Explanation: Above test case has 4 sorted arrays of size 4, 4, 4, 4 arr[][] = [[1, 2, 2, 2], [3, 3, 4, 4], [5, 5, 6, 6], [7, 8, 9, 9 ]]. The merged list will be [1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9]. |
| 29 | +``` |
| 30 | + |
| 31 | +## Constraints |
| 32 | + |
| 33 | +* `1 <= k <= 100` |
| 34 | + |
| 35 | +## Problem Explanation |
| 36 | +Given k sorted arrays arranged in the form of a matrix of size k * k. The task is to merge them into one sorted array. Return the merged sorted array |
| 37 | + |
| 38 | +## Code Implementation |
| 39 | + |
| 40 | +### C++ Solution |
| 41 | + |
| 42 | +```cpp |
| 43 | +#include <iostream> |
| 44 | +#include <vector> |
| 45 | +#include <algorithm> |
| 46 | + |
| 47 | +std::vector<int> mergeSortedArrays(std::vector<std::vector<int>> arrays) { |
| 48 | + std::vector<int> result; |
| 49 | + for (const auto& array : arrays) { |
| 50 | + result.insert(result.end(), array.begin(), array.end()); |
| 51 | + } |
| 52 | + std::sort(result.begin(), result.end()); |
| 53 | + return result; |
| 54 | +} |
| 55 | + |
| 56 | +int main() { |
| 57 | + std::vector<std::vector<int>> arrays = { { 1, 3, 5 }, { 2, 4, 6 }, { 0, 7, 8 } }; |
| 58 | + std::vector<int> result = mergeSortedArrays(arrays); |
| 59 | + for (int num : result) { |
| 60 | + std::cout << num << " "; |
| 61 | + } |
| 62 | + return 0; |
| 63 | +} |
| 64 | + |
| 65 | + |
| 66 | +``` |
| 67 | +
|
| 68 | +```java |
| 69 | +
|
| 70 | +
|
| 71 | +import java.util.Arrays; |
| 72 | +
|
| 73 | +public class Main { |
| 74 | + public static void main(String[] args) { |
| 75 | + int[][] arrays = { { 1, 3, 5 }, { 2, 4, 6 }, { 0, 7, 8 } }; |
| 76 | + int[] result = mergeSortedArrays(arrays); |
| 77 | + System.out.println(Arrays.toString(result)); |
| 78 | + } |
| 79 | +
|
| 80 | + public static int[] mergeSortedArrays(int[][] arrays) { |
| 81 | + int[] result = new int[arrays.length * arrays[0].length]; |
| 82 | + int index = 0; |
| 83 | + for (int[] array : arrays) { |
| 84 | + for (int num : array) { |
| 85 | + result[index++] = num; |
| 86 | + } |
| 87 | + } |
| 88 | + Arrays.sort(result); |
| 89 | + return result; |
| 90 | + } |
| 91 | +} |
| 92 | +
|
| 93 | +
|
| 94 | +``` |
| 95 | + |
| 96 | +```python |
| 97 | +import itertools |
| 98 | + |
| 99 | +def merge_sorted_arrays(arrays): |
| 100 | + return sorted(itertools.chain(*arrays)) |
| 101 | + |
| 102 | +``` |
| 103 | + |
| 104 | +```javascript |
| 105 | + |
| 106 | +function mergeSortedArrays(arrays) { |
| 107 | + return arrays.flat().sort((a, b) => a - b); |
| 108 | +} |
| 109 | + |
| 110 | + |
| 111 | +``` |
| 112 | + |
| 113 | +## Solution Logic: |
| 114 | + |
| 115 | + |
| 116 | +1. Flatten the 2D array: |
| 117 | + - Iterate through each subarray in the 2D array. |
| 118 | + - Concatenate each subarray to a single array. |
| 119 | +2. Sort the 1D array: |
| 120 | + - Use a sorting algorithm (e.g. quicksort, mergesort) to sort the array in ascending order. |
| 121 | +3. Return the sorted 1D array: |
| 122 | + - Return the sorted array as the final result. |
| 123 | + |
| 124 | +## Time Complexity |
| 125 | + |
| 126 | +* The time complexity is $O(n*log(n))$ where n is the total number of elements in the arrays. |
| 127 | + |
| 128 | +## Space Complexity |
| 129 | + |
| 130 | +* $O(n)$ where n is the total number of elements in the arrays. |
0 commit comments