Skip to content

Commit 71aa5a7

Browse files
authored
Create 980 - Unique Paths III.md
1 parent 2bf5fef commit 71aa5a7

File tree

1 file changed

+189
-0
lines changed

1 file changed

+189
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,189 @@
1+
---
2+
id: unique-paths-iii
3+
title: Unique Paths III
4+
sidebar_label: Unique Paths III
5+
tags: [Backtracking, DFS, Grid, C++, Python, Java]
6+
description: Find the number of unique paths from the starting square to the ending square in a grid, walking over every non-obstacle square exactly once.
7+
---
8+
9+
## Problem Statement
10+
11+
### Problem Description
12+
13+
You are given an `m x n` integer array `grid` where `grid[i][j]` could be:
14+
15+
- `1` representing the starting square. There is exactly one starting square.
16+
- `2` representing the ending square. There is exactly one ending square.
17+
- `0` representing empty squares we can walk over.
18+
- `-1` representing obstacles that we cannot walk over.
19+
20+
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
21+
22+
### Example
23+
24+
**Example 1:**
25+
```
26+
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
27+
Output: 2
28+
```
29+
**Explanation:** We have the following two paths:
30+
31+
(0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
32+
(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
33+
34+
35+
**Example 2:**
36+
```
37+
Input: grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
38+
Output: 4
39+
```
40+
**Explanation:** We have the following four paths:
41+
42+
(0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
43+
(0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
44+
(0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
45+
(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
46+
47+
48+
### Constraints
49+
50+
- `m == grid.length`
51+
- `n == grid[i].length`
52+
- `1 <= m, n <= 20`
53+
- `1 <= m * n <= 20`
54+
- `-1 <= grid[i][j] <= 2`
55+
- There is exactly one starting cell and one ending cell.
56+
57+
## Solution
58+
59+
### Intuition
60+
61+
To solve this problem, we can use a backtracking approach with Depth-First Search (DFS). We will start from the starting square and try to explore all possible paths to the ending square while ensuring we visit every non-obstacle square exactly once. We will backtrack whenever we hit a dead end or revisit a square.
62+
63+
### Time Complexity and Space Complexity Analysis
64+
65+
- **Time Complexity**: $O(4^{m \times n})$, where $m \times n$ is the total number of cells. This is because, in the worst case, we might explore all possible paths.
66+
- **Space Complexity**: $O(m \times n)$, for the recursion stack and the `visited` array.
67+
68+
### Code
69+
70+
#### C++
71+
72+
```cpp
73+
class Solution {
74+
public:
75+
int uniquePathsIII(vector<vector<int>>& grid) {
76+
int rows = grid.size();
77+
int cols = grid[0].size();
78+
int emptySquares = 1; // including the starting point
79+
int startX, startY;
80+
81+
for (int i = 0; i < rows; ++i) {
82+
for (int j = 0; j < cols; ++j) {
83+
if (grid[i][j] == 0) {
84+
++emptySquares;
85+
} else if (grid[i][j] == 1) {
86+
startX = i;
87+
startY = j;
88+
}
89+
}
90+
}
91+
92+
return dfs(grid, startX, startY, emptySquares);
93+
}
94+
95+
private:
96+
int dfs(vector<vector<int>>& grid, int x, int y, int emptySquares) {
97+
if (x < 0 || x >= grid.size() || y < 0 || y >= grid[0].size() || grid[x][y] == -1) {
98+
return 0;
99+
}
100+
if (grid[x][y] == 2) {
101+
return emptySquares == 0 ? 1 : 0;
102+
}
103+
104+
grid[x][y] = -1;
105+
int paths = dfs(grid, x + 1, y, emptySquares - 1) +
106+
dfs(grid, x - 1, y, emptySquares - 1) +
107+
dfs(grid, x, y + 1, emptySquares - 1) +
108+
dfs(grid, x, y - 1, emptySquares - 1);
109+
grid[x][y] = 0;
110+
111+
return paths;
112+
}
113+
};
114+
```
115+
116+
#### Python
117+
```python
118+
class Solution:
119+
def uniquePathsIII(self, grid: List[List[int]]) -> int:
120+
rows, cols = len(grid), len(grid[0])
121+
empty_squares = 1 # including the starting point
122+
start_x, start_y = 0, 0
123+
124+
for i in range(rows):
125+
for j in range(cols):
126+
if grid[i][j] == 0:
127+
empty_squares += 1
128+
elif grid[i][j] == 1:
129+
start_x, start_y = i, j
130+
131+
def dfs(x, y, empty_squares):
132+
if x < 0 or x >= rows or y < 0 or y >= cols or grid[x][y] == -1:
133+
return 0
134+
if grid[x][y] == 2:
135+
return 1 if empty_squares == 0 else 0
136+
137+
grid[x][y] = -1
138+
paths = (dfs(x + 1, y, empty_squares - 1) +
139+
dfs(x - 1, y, empty_squares - 1) +
140+
dfs(x, y + 1, empty_squares - 1) +
141+
dfs(x, y - 1, empty_squares - 1))
142+
grid[x][y] = 0
143+
144+
return paths
145+
146+
return dfs(start_x, start_y, empty_squares)
147+
```
148+
#### Java
149+
```java
150+
class Solution {
151+
public int uniquePathsIII(int[][] grid) {
152+
int rows = grid.length;
153+
int cols = grid[0].length;
154+
int emptySquares = 1; // including the starting point
155+
int startX = 0, startY = 0;
156+
157+
for (int i = 0; i < rows; i++) {
158+
for (int j = 0; j < cols; j++) {
159+
if (grid[i][j] == 0) {
160+
emptySquares++;
161+
} else if (grid[i][j] == 1) {
162+
startX = i;
163+
startY = j;
164+
}
165+
}
166+
}
167+
168+
return dfs(grid, startX, startY, emptySquares);
169+
}
170+
171+
private int dfs(int[][] grid, int x, int y, int emptySquares) {
172+
if (x < 0 || x >= grid.length || y < 0 || y >= grid[0].length || grid[x][y] == -1) {
173+
return 0;
174+
}
175+
if (grid[x][y] == 2) {
176+
return emptySquares == 0 ? 1 : 0;
177+
}
178+
179+
grid[x][y] = -1;
180+
int paths = dfs(grid, x + 1, y, emptySquares - 1) +
181+
dfs(grid, x - 1, y, emptySquares - 1) +
182+
dfs(grid, x, y + 1, emptySquares - 1) +
183+
dfs(grid, x, y - 1, emptySquares - 1);
184+
grid[x][y] = 0;
185+
186+
return paths;
187+
}
188+
}
189+
```

0 commit comments

Comments
 (0)