|
| 1 | +--- |
| 2 | +id: magic-number |
| 3 | +title: Magic Number |
| 4 | +sidebar_label: Magic-Number |
| 5 | +tags: |
| 6 | + - Easy |
| 7 | + - Dynamic Programming |
| 8 | + - Math |
| 9 | +description: "This tutorial covers the solution to the Magic Number problem from the GeeksforGeeks." |
| 10 | +--- |
| 11 | +## Problem Description |
| 12 | +A magic number is defined as a number that can be expressed as a power of 5 or sum of unique powers of `5`. First few magic numbers are `5`, `25`, `30(5 + 25)`, `125`, `130(125 + 5)`, … |
| 13 | +Given the value of `n`, find the `n`'th Magic number modulo `109+7`. |
| 14 | + |
| 15 | +## Examples |
| 16 | + |
| 17 | +**Example 1:** |
| 18 | + |
| 19 | +``` |
| 20 | +Input: n = 1 |
| 21 | +Output: 5 |
| 22 | +Explanation: 1'st Magic number is 5. |
| 23 | +``` |
| 24 | + |
| 25 | +**Example 2:** |
| 26 | + |
| 27 | +``` |
| 28 | +Input: n = 2 |
| 29 | +Output: 25 |
| 30 | +Explanation: 2'nd Magic number is 25. |
| 31 | +``` |
| 32 | + |
| 33 | +## Your Task |
| 34 | + |
| 35 | +You don't need to read input or print anything. Your task is to complete the function `nthMagicNo()` which takes n input and returns the answer with modulo `10^9+7`. |
| 36 | + |
| 37 | +Expected Time Complexity: $O(log(n))$ |
| 38 | + |
| 39 | +Expected Auxiliary Space: $O(1)$ for iterative approach. |
| 40 | + |
| 41 | +## Constraints |
| 42 | + |
| 43 | +* `1 ≤ n ≤ 10^5` |
| 44 | + |
| 45 | +## Problem Explanation |
| 46 | +A magic number is defined as a number that can be expressed as a power of 5 or sum of unique powers of `5`. First few magic numbers are `5`, `25`, `30(5 + 25)`, `125`, `130(125 + 5)`, … |
| 47 | +Given the value of `n`, find the `n`'th Magic number modulo `109+7`. |
| 48 | + |
| 49 | +## Code Implementation |
| 50 | + |
| 51 | +<Tabs> |
| 52 | + <TabItem value="Python" label="Python" default> |
| 53 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 54 | + |
| 55 | + ```py |
| 56 | + def get_nth_magic_number(n): |
| 57 | + magic_numbers = [] |
| 58 | + power = 0 |
| 59 | + while len(magic_numbers) < n: |
| 60 | + num = 5 ** power |
| 61 | + magic_numbers.append(num) |
| 62 | + for i in range(len(magic_numbers) - 1): |
| 63 | + magic_numbers.append(num + magic_numbers[i]) |
| 64 | + power += 1 |
| 65 | + return magic_numbers[n - 1] % (10**9 + 7) |
| 66 | + |
| 67 | +n = int(input("Enter the value of N: ")) |
| 68 | +print("The {}th magic number is: {}".format(n, get_nth_magic_number(n))) |
| 69 | + |
| 70 | + |
| 71 | + ``` |
| 72 | + |
| 73 | + </TabItem> |
| 74 | + <TabItem value="C++" label="C++"> |
| 75 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 76 | + |
| 77 | + ```cpp |
| 78 | + #include <iostream> |
| 79 | +#include <vector> |
| 80 | + |
| 81 | +const int MOD = 1e9 + 7; |
| 82 | + |
| 83 | +int getNthMagicNumber(int n) { |
| 84 | + std::vector<int> magicNumbers; |
| 85 | + int power = 0; |
| 86 | + while (magicNumbers.size() < n) { |
| 87 | + int num = pow(5, power); |
| 88 | + magicNumbers.push_back(num); |
| 89 | + for (int i = 0; i < magicNumbers.size() - 1; i++) { |
| 90 | + magicNumbers.push_back(num + magicNumbers[i]); |
| 91 | + } |
| 92 | + power++; |
| 93 | + } |
| 94 | + return magicNumbers[n - 1] % MOD; |
| 95 | +} |
| 96 | +int main() { |
| 97 | + int n; |
| 98 | + std::cout << "Enter the value of N: "; |
| 99 | + std::cin >> n; |
| 100 | + std::cout << "The " << n << "th magic number is: " << getNthMagicNumber(n) << std::endl; |
| 101 | + return 0; |
| 102 | +} |
| 103 | + |
| 104 | + |
| 105 | + ``` |
| 106 | +
|
| 107 | + </TabItem> |
| 108 | +
|
| 109 | + <TabItem value="Javascript" label="Javascript" default> |
| 110 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 111 | +
|
| 112 | + ```javascript |
| 113 | +function getNthMagicNumber(n) { |
| 114 | + let magicNumbers = []; |
| 115 | + let power = 0; |
| 116 | + while (magicNumbers.length < n) { |
| 117 | + let num = Math.pow(5, power); |
| 118 | + magicNumbers.push(num); |
| 119 | + for (let i = 0; i < magicNumbers.length - 1; i++) { |
| 120 | + magicNumbers.push(num + magicNumbers[i]); |
| 121 | + } |
| 122 | + power++; |
| 123 | + } |
| 124 | + return magicNumbers[n - 1] % (10**9 + 7); |
| 125 | +} |
| 126 | +
|
| 127 | +let n = parseInt(prompt("Enter the value of N:")); |
| 128 | +alert("The " + n + "th magic number is: " + getNthMagicNumber(n)); |
| 129 | +
|
| 130 | +
|
| 131 | + ``` |
| 132 | + |
| 133 | + </TabItem> |
| 134 | + |
| 135 | + <TabItem value="Typescript" label="Typescript" default> |
| 136 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 137 | + |
| 138 | + ```typescript |
| 139 | +function getNthMagicNumber(n: number): number { |
| 140 | + let magicNumbers: number[] = []; |
| 141 | + let power: number = 0; |
| 142 | + while (magicNumbers.length < n) { |
| 143 | + let num: number = Math.pow(5, power); |
| 144 | + magicNumbers.push(num); |
| 145 | + for (let i: number = 0; i < magicNumbers.length - 1; i++) { |
| 146 | + magicNumbers.push(num + magicNumbers[i]); |
| 147 | + } |
| 148 | + power++; |
| 149 | + } |
| 150 | + return magicNumbers[n - 1] % (10**9 + 7); |
| 151 | +} |
| 152 | + |
| 153 | +let n: number = parseInt(prompt("Enter the value of N:")); |
| 154 | +alert("The " + n + "th magic number is: " + getNthMagicNumber(n)); |
| 155 | + |
| 156 | + ``` |
| 157 | + |
| 158 | + </TabItem> |
| 159 | + |
| 160 | + <TabItem value="Java" label="Java" default> |
| 161 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 162 | + |
| 163 | + ```java |
| 164 | + |
| 165 | +import java.util.*; |
| 166 | + |
| 167 | +public class Main { |
| 168 | + public static int getNthMagicNumber(int n) { |
| 169 | + List<Integer> magicNumbers = new ArrayList<>(); |
| 170 | + int power = 0; |
| 171 | + while (magicNumbers.size() < n) { |
| 172 | + int num = (int) Math.pow(5, power); |
| 173 | + magicNumbers.add(num); |
| 174 | + for (int i = 0; i < magicNumbers.size() - 1; i++) { |
| 175 | + magicNumbers.add(num + magicNumbers.get(i)); |
| 176 | + } |
| 177 | + power++; |
| 178 | + } |
| 179 | + return magicNumbers.get(n - 1) % (int) (1e9 + 7); |
| 180 | + } |
| 181 | + public static void main(String[] args) { |
| 182 | + Scanner scanner = new Scanner(System.in); |
| 183 | + System.out.print("Enter the value of N: "); |
| 184 | + int n = scanner.nextInt(); |
| 185 | + System.out.println("The " + n + "th magic number is: " + getNthMagicNumber(n)); |
| 186 | + } |
| 187 | +} |
| 188 | + |
| 189 | + |
| 190 | + ``` |
| 191 | + |
| 192 | + </TabItem> |
| 193 | +</Tabs> |
| 194 | + |
| 195 | + |
| 196 | +## Time Complexity |
| 197 | + |
| 198 | +* The iterative approach has a time complexity of $O(n log n)$. |
| 199 | + |
| 200 | +## Space Complexity |
| 201 | + |
| 202 | +* The space complexity is $O(n)$ since we are using only a fixed amount of extra space. |
0 commit comments