|
| 1 | +--- |
| 2 | +id: z-algorithm |
| 3 | +title: Z-Algorithm |
| 4 | +sidebar_label: Z-Algorithm |
| 5 | +tags: [python, java, c++, programming, algorithms, dynamic programming, tutorial, in-depth] |
| 6 | +description: In this tutorial, we will learn about the Z-Algorithm and its implementation in Python, Java, and C++ with detailed explanations and examples. |
| 7 | +--- |
| 8 | + |
| 9 | +# Z-Algorithm |
| 10 | + |
| 11 | +The Z-Algorithm is a linear time algorithm used for pattern matching within a string. It is commonly used to compute the Z-array, which provides information about the occurrences of a substring within a string. The Z-array for a string `S` is an array where the `i-th` position represents the length of the longest substring starting from `S[i]` that matches a prefix of `S`. |
| 12 | + |
| 13 | +## Problem Statement |
| 14 | + |
| 15 | +Given a string `S` of length `n`, the Z-array of `S` is an array `Z` of length `n` where `Z[i]` is the length of the longest substring starting from `S[i]` which is also a prefix of `S`. |
| 16 | + |
| 17 | +## Example |
| 18 | + |
| 19 | +For the string `S = "aabcaabxaaaz"`, the Z-array would be `[0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0]`. |
| 20 | + |
| 21 | +## Algorithm |
| 22 | + |
| 23 | +1. Initialize `L` and `R` to 0. These will define the interval `[L, R]` which is the rightmost segment of `S` that matches the prefix of `S`. |
| 24 | +2. Iterate over each character in the string and compute the Z-values based on the interval `[L, R]`. |
| 25 | +3. If the current index `i` is outside of `[L, R]`, calculate the Z-value directly. |
| 26 | +4. If `i` is within `[L, R]`, use previously computed Z-values to determine the Z-value at `i`. |
| 27 | + |
| 28 | +## Code for Z-Algorithm |
| 29 | + |
| 30 | +## Z-Algorithm |
| 31 | + |
| 32 | +The Z-Algorithm is used for string pattern matching and finding the Z-array, which represents the lengths of the longest substrings starting from each position in a string that match the prefix of the string. |
| 33 | + |
| 34 | +### Python Implementation |
| 35 | + |
| 36 | +```python |
| 37 | +def compute_z(s): |
| 38 | + n = len(s) |
| 39 | + z = [0] * n |
| 40 | + l, r, k = 0, 0, 0 |
| 41 | + for i in range(1, n): |
| 42 | + if i > r: |
| 43 | + l, r = i, i |
| 44 | + while r < n and s[r] == s[r - l]: |
| 45 | + r += 1 |
| 46 | + z[i] = r - l |
| 47 | + r -= 1 |
| 48 | + else: |
| 49 | + k = i - l |
| 50 | + if z[k] < r - i + 1: |
| 51 | + z[i] = z[k] |
| 52 | + else: |
| 53 | + l = i |
| 54 | + while r < n and s[r] == s[r - l]: |
| 55 | + r += 1 |
| 56 | + z[i] = r - l |
| 57 | + r -= 1 |
| 58 | + return z |
| 59 | +s = "aabcaabxaaaz" |
| 60 | +print("Z-array:", compute_z(s)) |
| 61 | +``` |
| 62 | + |
| 63 | +### Java Implementation |
| 64 | + |
| 65 | +```java |
| 66 | +public class ZAlgorithm { |
| 67 | + public static int[] computeZ(String s) { |
| 68 | + int n = s.length(); |
| 69 | + int[] z = new int[n]; |
| 70 | + int l = 0, r = 0, k; |
| 71 | + for (int i = 1; i < n; i++) { |
| 72 | + if (i > r) { |
| 73 | + l = r = i; |
| 74 | + while (r < n && s.charAt(r) == s.charAt(r - l)) { |
| 75 | + r++; |
| 76 | + } |
| 77 | + z[i] = r - l; |
| 78 | + r--; |
| 79 | + } else { |
| 80 | + k = i - l; |
| 81 | + if (z[k] < r - i + 1) { |
| 82 | + z[i] = z[k]; |
| 83 | + } else { |
| 84 | + l = i; |
| 85 | + while (r < n && s.charAt(r) == s.charAt(r - l)) { |
| 86 | + r++; |
| 87 | + } |
| 88 | + z[i] = r - l; |
| 89 | + r--; |
| 90 | + } |
| 91 | + } |
| 92 | + } |
| 93 | + return z; |
| 94 | + } |
| 95 | + |
| 96 | + public static void main(String[] args) { |
| 97 | + String s = "aabcaabxaaaz"; |
| 98 | + int[] z = computeZ(s); |
| 99 | + System.out.print("Z-array: "); |
| 100 | + for (int value : z) { |
| 101 | + System.out.print(value + " "); |
| 102 | + } |
| 103 | + } |
| 104 | +} |
| 105 | +``` |
| 106 | + |
| 107 | +### Cpp Implementation |
| 108 | + |
| 109 | +```cpp |
| 110 | +#include <iostream> |
| 111 | +#include <vector> |
| 112 | +#include <string> |
| 113 | + |
| 114 | +using namespace std; |
| 115 | + |
| 116 | +vector<int> computeZ(const string& s) { |
| 117 | + int n = s.length(); |
| 118 | + vector<int> z(n, 0); |
| 119 | + int l = 0, r = 0, k; |
| 120 | + for (int i = 1; i < n; i++) { |
| 121 | + if (i > r) { |
| 122 | + l = r = i; |
| 123 | + while (r < n && s[r] == s[r - l]) { |
| 124 | + r++; |
| 125 | + } |
| 126 | + z[i] = r - l; |
| 127 | + r--; |
| 128 | + } else { |
| 129 | + k = i - l; |
| 130 | + if (z[k] < r - i + 1) { |
| 131 | + z[i] = z[k]; |
| 132 | + } else { |
| 133 | + l = i; |
| 134 | + while (r < n && s[r] == s[r - l]) { |
| 135 | + r++; |
| 136 | + } |
| 137 | + z[i] = r - l; |
| 138 | + r--; |
| 139 | + } |
| 140 | + } |
| 141 | + } |
| 142 | + return z; |
| 143 | +} |
| 144 | + |
| 145 | +int main() { |
| 146 | + string s = "aabcaabxaaaz"; |
| 147 | + vector<int> z = computeZ(s); |
| 148 | + cout << "Z-array: "; |
| 149 | + for (int value : z) { |
| 150 | + cout << value << " "; |
| 151 | + } |
| 152 | + cout << endl; |
| 153 | + return 0; |
| 154 | +} |
| 155 | +``` |
| 156 | +
|
| 157 | +## Output |
| 158 | +
|
| 159 | +`Z-array: 0 1 0 3 0 1 0 2 0 1 0 0` |
| 160 | +
|
| 161 | +
|
| 162 | +## Time Complexity |
| 163 | +
|
| 164 | +The Z-Algorithm runs in $O(n)$ time complexity where `n` is the length of the string. This is due to the linear scan of the string and the efficient handling of previously computed Z-values. |
| 165 | +
|
| 166 | +## Space Complexity |
| 167 | +
|
| 168 | +The space complexity is $O(n)$ for storing the Z-array. |
| 169 | +
|
| 170 | +## Conclusion |
| 171 | +
|
| 172 | +The Z-Algorithm is an efficient method for pattern matching and string analysis, providing the Z-array in linear time. This algorithm is widely used in various applications such as substring search and pattern matching. |
0 commit comments