|
| 1 | +--- |
| 2 | +id: replace-words |
| 3 | +title: Replace Words |
| 4 | +sidebar_label: 648-Replace Words |
| 5 | +tags: |
| 6 | + - Trie |
| 7 | + - Hash Table |
| 8 | + - String Manipulation |
| 9 | + - LeetCode |
| 10 | + - Java |
| 11 | + - Python |
| 12 | + - C++ |
| 13 | +description: "This is a solution to the Replace Words problem on LeetCode." |
| 14 | +sidebar_position: 3 |
| 15 | +--- |
| 16 | + |
| 17 | +## Problem Description |
| 18 | + |
| 19 | +In English, we have a concept called a root, which can be followed by some other word to form another longer word - let's call this word a derivative. For example, when the root "help" is followed by the word "ful," we can form a derivative "helpful." |
| 20 | + |
| 21 | +Given a dictionary consisting of many roots and a sentence consisting of words separated by spaces, replace all the derivatives in the sentence with the root forming it. If a derivative can be replaced by more than one root, replace it with the root that has the shortest length. |
| 22 | + |
| 23 | +Return the sentence after the replacement. |
| 24 | + |
| 25 | +### Examples |
| 26 | + |
| 27 | +**Example 1:** |
| 28 | + |
| 29 | +``` |
| 30 | +Input: dictionary = ["cat","bat","rat"], sentence = "the cattle was rattled by the battery" |
| 31 | +Output: "the cat was rat by the bat" |
| 32 | +``` |
| 33 | + |
| 34 | +**Example 2:** |
| 35 | + |
| 36 | +``` |
| 37 | +Input: dictionary = ["a","b","c"], sentence = "aadsfasf absbs bbab cadsfafs" |
| 38 | +Output: "a a b c" |
| 39 | +``` |
| 40 | + |
| 41 | +### Constraints |
| 42 | + |
| 43 | +- `1 <= dictionary.length <= 1000` |
| 44 | +- `1 <= dictionary[i].length <= 100` |
| 45 | +- `dictionary[i]` consists of only lowercase letters. |
| 46 | +- `1 <= sentence.length <= 10^6` |
| 47 | +- `sentence` consists of only lowercase letters and spaces. |
| 48 | +- The number of words in `sentence` is in the range [1, 1000]. |
| 49 | +- The length of each word in `sentence` is in the range [1, 1000]. |
| 50 | +- Every two consecutive words in `sentence` will be separated by exactly one space. |
| 51 | +- `sentence` does not have leading or trailing spaces. |
| 52 | + |
| 53 | +--- |
| 54 | + |
| 55 | +## Solution for Replace Words Problem |
| 56 | + |
| 57 | +To solve this problem, we need to efficiently replace the derivatives in the sentence with their respective roots from the dictionary. We can approach this problem using a Trie data structure for efficient prefix matching. |
| 58 | + |
| 59 | +### Approach: Trie Data Structure |
| 60 | + |
| 61 | +1. **Build the Trie:** |
| 62 | + - Insert all the roots from the dictionary into a Trie. |
| 63 | + - Each node in the Trie represents a character, and the path from the root to any node represents a prefix of one or more roots. |
| 64 | + |
| 65 | +2. **Replace Derivatives:** |
| 66 | + - For each word in the sentence, traverse the Trie to find the shortest prefix (root). |
| 67 | + - If found, replace the word with the root; otherwise, keep the word as is. |
| 68 | + |
| 69 | +### Code in Different Languages |
| 70 | + |
| 71 | +<Tabs> |
| 72 | +<TabItem value="C++" label="C++" default> |
| 73 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 74 | + |
| 75 | +```cpp |
| 76 | +class TrieNode { |
| 77 | +public: |
| 78 | + unordered_map<char, TrieNode*> children; |
| 79 | + string word = ""; |
| 80 | +}; |
| 81 | + |
| 82 | +class Trie { |
| 83 | +public: |
| 84 | + TrieNode* root; |
| 85 | + |
| 86 | + Trie() { |
| 87 | + root = new TrieNode(); |
| 88 | + } |
| 89 | + |
| 90 | + void insert(string word) { |
| 91 | + TrieNode* node = root; |
| 92 | + for (char c : word) { |
| 93 | + if (node->children.find(c) == node->children.end()) { |
| 94 | + node->children[c] = new TrieNode(); |
| 95 | + } |
| 96 | + node = node->children[c]; |
| 97 | + } |
| 98 | + node->word = word; |
| 99 | + } |
| 100 | + |
| 101 | + string searchRoot(string word) { |
| 102 | + TrieNode* node = root; |
| 103 | + for (char c : word) { |
| 104 | + if (node->children.find(c) == node->children.end()) { |
| 105 | + return word; |
| 106 | + } |
| 107 | + node = node->children[c]; |
| 108 | + if (!node->word.empty()) { |
| 109 | + return node->word; |
| 110 | + } |
| 111 | + } |
| 112 | + return word; |
| 113 | + } |
| 114 | +}; |
| 115 | + |
| 116 | +class Solution { |
| 117 | +public: |
| 118 | + string replaceWords(vector<string>& dictionary, string sentence) { |
| 119 | + Trie trie; |
| 120 | + for (string root : dictionary) { |
| 121 | + trie.insert(root); |
| 122 | + } |
| 123 | + |
| 124 | + stringstream ss(sentence); |
| 125 | + string word; |
| 126 | + string result; |
| 127 | + |
| 128 | + while (ss >> word) { |
| 129 | + if (!result.empty()) result += " "; |
| 130 | + result += trie.searchRoot(word); |
| 131 | + } |
| 132 | + |
| 133 | + return result; |
| 134 | + } |
| 135 | +}; |
| 136 | +``` |
| 137 | +
|
| 138 | +</TabItem> |
| 139 | +<TabItem value="Java" label="Java"> |
| 140 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 141 | +
|
| 142 | +```java |
| 143 | +class TrieNode { |
| 144 | + Map<Character, TrieNode> children = new HashMap<>(); |
| 145 | + String word = ""; |
| 146 | +} |
| 147 | +
|
| 148 | +class Trie { |
| 149 | + TrieNode root; |
| 150 | + |
| 151 | + public Trie() { |
| 152 | + root = new TrieNode(); |
| 153 | + } |
| 154 | + |
| 155 | + public void insert(String word) { |
| 156 | + TrieNode node = root; |
| 157 | + for (char c : word.toCharArray()) { |
| 158 | + node.children.putIfAbsent(c, new TrieNode()); |
| 159 | + node = node.children.get(c); |
| 160 | + } |
| 161 | + node.word = word; |
| 162 | + } |
| 163 | + |
| 164 | + public String searchRoot(String word) { |
| 165 | + TrieNode node = root; |
| 166 | + for (char c : word.toCharArray()) { |
| 167 | + if (!node.children.containsKey(c)) { |
| 168 | + return word; |
| 169 | + } |
| 170 | + node = node.children.get(c); |
| 171 | + if (!node.word.isEmpty()) { |
| 172 | + return node.word; |
| 173 | + } |
| 174 | + } |
| 175 | + return word; |
| 176 | + } |
| 177 | +} |
| 178 | +
|
| 179 | +class Solution { |
| 180 | + public String replaceWords(List<String> dictionary, String sentence) { |
| 181 | + Trie trie = new Trie(); |
| 182 | + for (String root : dictionary) { |
| 183 | + trie.insert(root); |
| 184 | + } |
| 185 | + |
| 186 | + String[] words = sentence.split(" "); |
| 187 | + StringBuilder result = new StringBuilder(); |
| 188 | + |
| 189 | + for (String word : words) { |
| 190 | + if (result.length() > 0) { |
| 191 | + result.append(" "); |
| 192 | + } |
| 193 | + result.append(trie.searchRoot(word)); |
| 194 | + } |
| 195 | + |
| 196 | + return result.toString(); |
| 197 | + } |
| 198 | +} |
| 199 | +``` |
| 200 | + |
| 201 | +</TabItem> |
| 202 | +<TabItem value="Python" label="Python"> |
| 203 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 204 | + |
| 205 | +```python |
| 206 | +class TrieNode: |
| 207 | + def __init__(self): |
| 208 | + self.children = {} |
| 209 | + self.word = "" |
| 210 | + |
| 211 | +class Trie: |
| 212 | + def __init__(self): |
| 213 | + self.root = TrieNode() |
| 214 | + |
| 215 | + def insert(self, word): |
| 216 | + node = self.root |
| 217 | + for char in word: |
| 218 | + if char not in node.children: |
| 219 | + node.children[char] = TrieNode() |
| 220 | + node = node.children[char] |
| 221 | + node.word = word |
| 222 | + |
| 223 | + def searchRoot(self, word): |
| 224 | + node = self.root |
| 225 | + for char in word: |
| 226 | + if char not in node.children: |
| 227 | + return word |
| 228 | + node = node.children[char] |
| 229 | + if node.word: |
| 230 | + return node.word |
| 231 | + return word |
| 232 | + |
| 233 | +class Solution: |
| 234 | + def replaceWords(self, dictionary: List[str], sentence: str) -> str: |
| 235 | + trie = Trie() |
| 236 | + for root in dictionary: |
| 237 | + trie.insert(root) |
| 238 | + |
| 239 | + words = sentence.split() |
| 240 | + for i in range(len(words)): |
| 241 | + words[i] = trie.searchRoot(words[i]) |
| 242 | + |
| 243 | + return ' '.join(words) |
| 244 | +``` |
| 245 | + |
| 246 | +</TabItem> |
| 247 | +</Tabs> |
| 248 | + |
| 249 | +#### Complexity Analysis |
| 250 | + |
| 251 | +- **Time Complexity**: $O(N + L)$, where `N` is the total number of characters in the dictionary and `L` is the length of the sentence. |
| 252 | +- **Space Complexity**: $O(N)$, where `N` is the total number of characters in the dictionary. |
| 253 | + |
| 254 | +--- |
| 255 | + |
| 256 | +<h2>Authors:</h2> |
| 257 | + |
| 258 | +<div style={{display: 'flex', flexWrap: 'wrap', justifyContent: 'space-between', gap: '10px'}}> |
| 259 | +{['ImmidiSivani'].map(username => ( |
| 260 | + <Author key={username} username={username} /> |
| 261 | +))} |
| 262 | +</div> |
0 commit comments