|
1 |
| ---- |
2 |
| -id: square-root |
3 |
| -title: Square Root |
4 |
| -sidebar_label: Square-Root |
5 |
| -tags: |
6 |
| - - Math |
7 |
| - - Binary Search |
8 |
| -description: "This document provides solutions to the problem of finding the Square Root of an integer." |
9 |
| ---- |
10 |
| - |
11 |
| -## Problem |
12 |
| - |
13 |
| -Given an integer `x`, find the square root of `x`. If `x` is not a perfect square, then return the floor value of √x. |
14 |
| - |
15 |
| -### Examples |
16 |
| - |
17 |
| -**Example 1:** |
18 |
| - |
19 |
| -``` |
20 |
| -Input: x = 5 |
21 |
| -Output: 2 |
22 |
| -Explanation: Since 5 is not a perfect square, the floor of the square root of 5 is 2. |
23 |
| -``` |
24 |
| - |
25 |
| -**Example 2:** |
26 |
| - |
27 |
| -``` |
28 |
| -Input: x = 4 |
29 |
| -Output: 2 |
30 |
| -Explanation: Since 4 is a perfect square, its square root is 2. |
31 |
| -``` |
32 |
| - |
33 |
| -### Your Task |
34 |
| - |
35 |
| -You don't need to read input or print anything. The task is to complete the function `floorSqrt()` which takes `x` as the input parameter and returns its square root. Note: Try solving the question without using the sqrt function. The value of `x` ≥ 0. |
36 |
| - |
37 |
| -**Expected Time Complexity:** $O(log N)$ |
38 |
| -**Expected Auxiliary Space:** $O(1)$ |
39 |
| - |
40 |
| -**Constraints** |
41 |
| - |
42 |
| -- `1 ≤ x ≤ 10^7` |
43 |
| - |
44 |
| -## Solution |
45 |
| - |
46 |
| -### Intuition & Approach |
47 |
| - |
48 |
| -To find the square root of a number without using the built-in `sqrt` function, we can use binary search. This approach leverages the fact that the square root of `x` must lie between `0` and `x`. By repeatedly narrowing down the range using binary search, we can efficiently find the floor value of the square root. |
49 |
| - |
50 |
| -### Implementation |
51 |
| - |
52 |
| -<Tabs> |
53 |
| - <TabItem value="python" label="Python"> |
54 |
| - |
55 |
| -```python |
56 |
| -class Solution: |
57 |
| - def floorSqrt(self, x: int) -> int: |
58 |
| - if x == 0 or x == 1: |
59 |
| - return x |
60 |
| - start, end = 1, x |
61 |
| - ans = 0 |
62 |
| - while start <= end: |
63 |
| - mid = (start + end) // 2 |
64 |
| - if mid * mid == x: |
65 |
| - return mid |
66 |
| - if mid * mid < x: |
67 |
| - start = mid + 1 |
68 |
| - ans = mid |
69 |
| - else: |
70 |
| - end = mid - 1 |
71 |
| - return ans |
72 |
| -``` |
73 |
| - |
74 |
| - </TabItem> |
75 |
| - <TabItem value="java" label="Java"> |
76 |
| - |
77 |
| -```java |
78 |
| -class Solution { |
79 |
| - long floorSqrt(long x) { |
80 |
| - if (x == 0 || x == 1) { |
81 |
| - return x; |
82 |
| - } |
83 |
| - long start = 1, end = x, ans = 0; |
84 |
| - while (start <= end) { |
85 |
| - long mid = (start + end) / 2; |
86 |
| - if (mid * mid == x) { |
87 |
| - return mid; |
88 |
| - } |
89 |
| - if (mid * mid < x) { |
90 |
| - start = mid + 1; |
91 |
| - ans = mid; |
92 |
| - } else { |
93 |
| - end = mid - 1; |
94 |
| - } |
95 |
| - } |
96 |
| - return ans; |
97 |
| - } |
98 |
| -} |
99 |
| -``` |
100 |
| - |
101 |
| - </TabItem> |
102 |
| - <TabItem value="cpp" label="C++"> |
103 |
| - |
104 |
| -```cpp |
105 |
| -class Solution { |
106 |
| -public: |
107 |
| - long long int floorSqrt(long long int x) { |
108 |
| - if (x == 0 || x == 1) |
109 |
| - return x; |
110 |
| - long long int start = 1, end = x, ans = 0; |
111 |
| - while (start <= end) { |
112 |
| - long long int mid = (start + end) / 2; |
113 |
| - if (mid * mid == x) |
114 |
| - return mid; |
115 |
| - if (mid * mid < x) { |
116 |
| - start = mid + 1; |
117 |
| - ans = mid; |
118 |
| - } else { |
119 |
| - end = mid - 1; |
120 |
| - } |
121 |
| - } |
122 |
| - return ans; |
123 |
| - } |
124 |
| -}; |
125 |
| -``` |
126 |
| -
|
127 |
| - </TabItem> |
128 |
| - <TabItem value="javascript" label="JavaScript"> |
129 |
| -
|
130 |
| -```javascript |
131 |
| -class Solution { |
132 |
| - floorSqrt(x) { |
133 |
| - if (x === 0 || x === 1) { |
134 |
| - return x; |
135 |
| - } |
136 |
| - let start = 1, |
137 |
| - end = x, |
138 |
| - ans = 0; |
139 |
| - while (start <= end) { |
140 |
| - let mid = Math.floor((start + end) / 2); |
141 |
| - if (mid * mid === x) { |
142 |
| - return mid; |
143 |
| - } |
144 |
| - if (mid * mid < x) { |
145 |
| - start = mid + 1; |
146 |
| - ans = mid; |
147 |
| - } else { |
148 |
| - end = mid - 1; |
149 |
| - } |
150 |
| - } |
151 |
| - return ans; |
152 |
| - } |
153 |
| -} |
154 |
| -``` |
155 |
| - |
156 |
| - </TabItem> |
157 |
| - <TabItem value="typescript" label="TypeScript"> |
158 |
| - |
159 |
| -```typescript |
160 |
| -class Solution { |
161 |
| - floorSqrt(x: number): number { |
162 |
| - if (x === 0 || x === 1) { |
163 |
| - return x; |
164 |
| - } |
165 |
| - let start = 1, |
166 |
| - end = x, |
167 |
| - ans = 0; |
168 |
| - while (start <= end) { |
169 |
| - let mid = Math.floor((start + end) / 2); |
170 |
| - if (mid * mid === x) { |
171 |
| - return mid; |
172 |
| - } |
173 |
| - if (mid * mid < x) { |
174 |
| - start = mid + 1; |
175 |
| - ans = mid; |
176 |
| - } else { |
177 |
| - end = mid - 1; |
178 |
| - } |
179 |
| - } |
180 |
| - return ans; |
181 |
| - } |
182 |
| -} |
183 |
| -``` |
184 |
| - |
185 |
| - </TabItem> |
186 |
| -</Tabs> |
187 |
| - |
188 |
| -## Complexity Analysis |
189 |
| - |
190 |
| -The provided solutions efficiently find the floor value of the square root of a given integer `x` using binary search. This approach ensures a time complexity of $ O(log N) and an auxiliary space complexity of $O(1)$. The algorithms are designed to handle large values of `x` up to 10^7 efficiently without relying on built-in square root functions. |
191 |
| - |
192 |
| -**Time Complexity:** $O(log N)$ |
193 |
| -**Auxiliary Space:** $O(1)$ |
| 1 | +--- |
| 2 | +id: square-root |
| 3 | +title: Square Root |
| 4 | +sidebar_label: Square-Root |
| 5 | +tags: |
| 6 | + - Math |
| 7 | + - Binary Search |
| 8 | +description: "This document provides solutions to the problem of finding the Square Root of an integer." |
| 9 | +--- |
| 10 | + |
| 11 | +## Problem |
| 12 | + |
| 13 | +Given an integer `x`, find the square root of `x`. If `x` is not a perfect square, then return the floor value of √x. |
| 14 | + |
| 15 | +### Examples |
| 16 | + |
| 17 | +**Example 1:** |
| 18 | + |
| 19 | +``` |
| 20 | +Input: x = 5 |
| 21 | +Output: 2 |
| 22 | +Explanation: Since 5 is not a perfect square, the floor of the square root of 5 is 2. |
| 23 | +``` |
| 24 | + |
| 25 | +**Example 2:** |
| 26 | + |
| 27 | +``` |
| 28 | +Input: x = 4 |
| 29 | +Output: 2 |
| 30 | +Explanation: Since 4 is a perfect square, its square root is 2. |
| 31 | +``` |
| 32 | + |
| 33 | +### Your Task |
| 34 | + |
| 35 | +You don't need to read input or print anything. The task is to complete the function `floorSqrt()` which takes `x` as the input parameter and returns its square root. Note: Try solving the question without using the sqrt function. The value of `x` ≥ 0. |
| 36 | + |
| 37 | +**Expected Time Complexity:** $O(log N)$ |
| 38 | +**Expected Auxiliary Space:** $O(1)$ |
| 39 | + |
| 40 | +**Constraints** |
| 41 | + |
| 42 | +- `1 ≤ x ≤ 10^7` |
| 43 | + |
| 44 | +## Solution |
| 45 | + |
| 46 | +### Intuition & Approach |
| 47 | + |
| 48 | +To find the square root of a number without using the built-in `sqrt` function, we can use binary search. This approach leverages the fact that the square root of `x` must lie between `0` and `x`. By repeatedly narrowing down the range using binary search, we can efficiently find the floor value of the square root. |
| 49 | + |
| 50 | +### Implementation |
| 51 | + |
| 52 | +<Tabs> |
| 53 | + <TabItem value="python" label="Python"> |
| 54 | + |
| 55 | +```python |
| 56 | +class Solution: |
| 57 | + def floorSqrt(self, x: int) -> int: |
| 58 | + if x == 0 or x == 1: |
| 59 | + return x |
| 60 | + start, end = 1, x |
| 61 | + ans = 0 |
| 62 | + while start <= end: |
| 63 | + mid = (start + end) // 2 |
| 64 | + if mid * mid == x: |
| 65 | + return mid |
| 66 | + if mid * mid < x: |
| 67 | + start = mid + 1 |
| 68 | + ans = mid |
| 69 | + else: |
| 70 | + end = mid - 1 |
| 71 | + return ans |
| 72 | +``` |
| 73 | + |
| 74 | + </TabItem> |
| 75 | + <TabItem value="java" label="Java"> |
| 76 | + |
| 77 | +```java |
| 78 | +class Solution { |
| 79 | + long floorSqrt(long x) { |
| 80 | + if (x == 0 || x == 1) { |
| 81 | + return x; |
| 82 | + } |
| 83 | + long start = 1, end = x, ans = 0; |
| 84 | + while (start <= end) { |
| 85 | + long mid = (start + end) / 2; |
| 86 | + if (mid * mid == x) { |
| 87 | + return mid; |
| 88 | + } |
| 89 | + if (mid * mid < x) { |
| 90 | + start = mid + 1; |
| 91 | + ans = mid; |
| 92 | + } else { |
| 93 | + end = mid - 1; |
| 94 | + } |
| 95 | + } |
| 96 | + return ans; |
| 97 | + } |
| 98 | +} |
| 99 | +``` |
| 100 | + |
| 101 | + </TabItem> |
| 102 | + <TabItem value="cpp" label="C++"> |
| 103 | + |
| 104 | +```cpp |
| 105 | +class Solution { |
| 106 | +public: |
| 107 | + long long int floorSqrt(long long int x) { |
| 108 | + if (x == 0 || x == 1) |
| 109 | + return x; |
| 110 | + long long int start = 1, end = x, ans = 0; |
| 111 | + while (start <= end) { |
| 112 | + long long int mid = (start + end) / 2; |
| 113 | + if (mid * mid == x) |
| 114 | + return mid; |
| 115 | + if (mid * mid < x) { |
| 116 | + start = mid + 1; |
| 117 | + ans = mid; |
| 118 | + } else { |
| 119 | + end = mid - 1; |
| 120 | + } |
| 121 | + } |
| 122 | + return ans; |
| 123 | + } |
| 124 | +}; |
| 125 | +``` |
| 126 | +
|
| 127 | + </TabItem> |
| 128 | + <TabItem value="javascript" label="JavaScript"> |
| 129 | +
|
| 130 | +```javascript |
| 131 | +class Solution { |
| 132 | + floorSqrt(x) { |
| 133 | + if (x === 0 || x === 1) { |
| 134 | + return x; |
| 135 | + } |
| 136 | + let start = 1, |
| 137 | + end = x, |
| 138 | + ans = 0; |
| 139 | + while (start <= end) { |
| 140 | + let mid = Math.floor((start + end) / 2); |
| 141 | + if (mid * mid === x) { |
| 142 | + return mid; |
| 143 | + } |
| 144 | + if (mid * mid < x) { |
| 145 | + start = mid + 1; |
| 146 | + ans = mid; |
| 147 | + } else { |
| 148 | + end = mid - 1; |
| 149 | + } |
| 150 | + } |
| 151 | + return ans; |
| 152 | + } |
| 153 | +} |
| 154 | +``` |
| 155 | + |
| 156 | + </TabItem> |
| 157 | + <TabItem value="typescript" label="TypeScript"> |
| 158 | + |
| 159 | +```typescript |
| 160 | +class Solution { |
| 161 | + floorSqrt(x: number): number { |
| 162 | + if (x === 0 || x === 1) { |
| 163 | + return x; |
| 164 | + } |
| 165 | + let start = 1, |
| 166 | + end = x, |
| 167 | + ans = 0; |
| 168 | + while (start <= end) { |
| 169 | + let mid = Math.floor((start + end) / 2); |
| 170 | + if (mid * mid === x) { |
| 171 | + return mid; |
| 172 | + } |
| 173 | + if (mid * mid < x) { |
| 174 | + start = mid + 1; |
| 175 | + ans = mid; |
| 176 | + } else { |
| 177 | + end = mid - 1; |
| 178 | + } |
| 179 | + } |
| 180 | + return ans; |
| 181 | + } |
| 182 | +} |
| 183 | +``` |
| 184 | + |
| 185 | + </TabItem> |
| 186 | +</Tabs> |
| 187 | + |
| 188 | +## Complexity Analysis |
| 189 | + |
| 190 | +The provided solutions efficiently find the floor value of the square root of a given integer `x` using binary search. This approach ensures a time complexity of $ O(log N) and an auxiliary space complexity of $O(1)$. The algorithms are designed to handle large values of `x` up to 10^7 efficiently without relying on built-in square root functions. |
| 191 | + |
| 192 | +**Time Complexity:** $O(log N)$ |
| 193 | +**Auxiliary Space:** $O(1)$ |
0 commit comments