-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcar_detect.py
46 lines (38 loc) · 1.18 KB
/
car_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#import libraries of python opencv
import cv2
import numpy as np
from firebase import firebase
firebase = firebase.FirebaseApplication('https://alternate-f167e.firebaseio.com/', None)
#create VideoCapture object and read from video file
cap = cv2.VideoCapture(0)
#use trained cars XML classifiers
car_cascade = cv2.CascadeClassifier('cars.xml')
count=0
weirdint=0
#read until video is completed
while True:
#capture frame by frame
ret, frame = cap.read()
#convert video into gray scale of each frames
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#detect cars in the video
cars = car_cascade.detectMultiScale(gray, 1.1, 3)
#to draw arectangle in each cars
for (x,y,w,h) in cars:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
#display the resulting frame
cv2.imshow('video', frame)
count=len(cars)
print(count)
weirdint=weirdint+1
if weirdint%20==0 :
data = {"cars": count}
result= firebase.put('/p2',"cars", count)
print result
#press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
#release the videocapture object
cap.release()
#close all the frames
cv2.destroyAllWindows()