forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbatched_gemm.cu
466 lines (411 loc) · 14.8 KB
/
batched_gemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include <iostream>
#include <vector>
#include "cutlass/cutlass.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/gemm/device/gemm_array.h"
#include "cutlass/gemm/device/gemm_batched.h"
#pragma warning( disable : 4503)
/*
This example demonstrates how to use cutlass to compute a batched strided gemm in two different ways:
1. By specifying pointers to the first matrices of the batch and the stride between the consecutive
matrices of the batch (this is called a strided batched gemm).
2. By copying pointers to all matrices of the batch to the device memory (this is called an array gemm).
In this example, both A and B matrix are non-transpose and column major matrix
batched_C = batched_A x batched_B
As an example, matrix C can be seen as
-----------------------------------------------------------
(0,0,0) | (0,0,1) | (0,0,2) | (1,0,0) | (1,0,1) | (1,0,2) |
-----------------------------------------------------------
(0,1,0) | (0,1,1) | (0,1,2) | (1,1,0) | (1,1,1) | (1,1,2) |
-----------------------------------------------------------
(0,2,0) | (0,2,1) | (0,2,2) | (1,2,0) | (1,2,1) | (1,2,2) |
-----------------------------------------------------------
(0,3,0) | (0,3,1) | (0,3,2) | (1,3,0) | (1,3,1) | (1,3,2) |
-----------------------------------------------------------
(0,4,0) | (0,4,1) | (0,4,2) | (1,4,0) | (1,4,1) | (1,4,2) |
-----------------------------------------------------------
(0,5,0) | (0,5,1) | (0,5,2) | (1,5,0) | (1,5,1) | (1,5,2) |
-----------------------------------------------------------
batch 0 | batch 1
where we denote each element with (batch_idx, row_idx, column_idx)
In this example, batch size is 2, M is 6 and N is 3
The stride (batch_stride_C) between the first element of two batches is ldc * n
matrix A can be seen as
---------------------------------------
(0,0,0) | (0,0,1) | (1,0,0) | (1,0,1) |
---------------------------------------
(0,1,0) | (0,1,1) | (1,1,0) | (1,1,1) |
---------------------------------------
(0,2,0) | (0,2,1) | (1,2,0) | (1,2,1) |
---------------------------------------
(0,3,0) | (0,3,1) | (1,3,0) | (1,3,1) |
---------------------------------------
(0,4,0) | (0,4,1) | (1,4,0) | (1,4,1) |
---------------------------------------
(0,5,0) | (0,5,1) | (1,5,0) | (1,5,1) |
---------------------------------------
batch 0 | batch 1
, where batch size is 2, M is 6 and K is 2
The stride (batch_stride_A) between the first element of two batches is lda * k
matrix B can be seen as
-----------------------------
(0,0,0) | (0,0,1) | (0,0,2) |
----------------------------- batch 0
(0,1,0) | (0,1,1) | (0,1,2) |
-------------------------------------
(1,0,0) | (1,0,1) | (1,0,2) |
----------------------------- batch 1
(1,1,0) | (1,1,1) | (1,1,2) |
-----------------------------
, where the batch size is 2, N is 3 and K is 2
The stride (batch_stride_B) between the first element of two batches is k
*/
cudaError_t cutlass_array_sgemm(
int m,
int n,
int k,
float alpha,
float const * const *A,
int lda,
float const * const *B,
int ldb,
float * const *C,
int ldc,
float beta,
int batch_count) {
using Gemm = cutlass::gemm::device::GemmArray<
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor
>;
Gemm gemm_op;
cutlass::Status status = gemm_op({
{m, n, k},
A, lda,
B, ldb,
C, ldc,
C, ldc,
{alpha, beta},
batch_count
});
if (status != cutlass::Status::kSuccess) {
return cudaErrorUnknown;
}
return cudaSuccess;
}
cudaError_t cutlass_strided_batched_sgemm(
int m,
int n,
int k,
float alpha,
float const *A,
int lda,
long long int batch_stride_A,
float const *B,
int ldb,
long long int batch_stride_B,
float *C,
int ldc,
long long int batch_stride_C,
float beta,
int batch_count) {
using Gemm = cutlass::gemm::device::GemmBatched<
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor,
float, cutlass::layout::ColumnMajor
>;
Gemm gemm_op;
cutlass::Status status = gemm_op({
{m, n, k},
{A, lda},
batch_stride_A,
{B, ldb},
batch_stride_B,
{C, ldc},
batch_stride_C,
{C, ldc},
batch_stride_C,
{alpha, beta},
batch_count
});
if (status != cutlass::Status::kSuccess) {
return cudaErrorUnknown;
}
return cudaSuccess;
}
template<typename T>
cudaError_t strided_batched_gemm_nn_reference(
int m,
int n,
int k,
T alpha,
std::vector<T> const &A,
int lda,
long long int batch_stride_A,
std::vector<T> const &B,
int ldb,
long long int batch_stride_B,
std::vector<T> &C,
int ldc,
long long int batch_stride_C,
T beta,
int batch_count) {
/*
strided batched gemm NN
*/
cudaError_t result = cudaSuccess;
if (A.size() < size_t(lda * k * batch_count)) {
std::cout << "the size of A is too small" << std::endl;
return cudaErrorInvalidValue;
}
if (B.size() < size_t(ldb * n)) {
std::cout << "the size of B is too small" << std::endl;
return cudaErrorInvalidValue;
}
if (C.size() < size_t(ldc * n * batch_count)) {
std::cout << "the size of C is too small" << std::endl;
return cudaErrorInvalidValue;
}
for (int batch_idx = 0; batch_idx < batch_count; batch_idx++) {
for (int n_idx = 0; n_idx < n; n_idx++) {
for (int m_idx = 0; m_idx < m; m_idx++) {
T accum = beta * C[batch_idx * batch_stride_C + n_idx * ldc + m_idx];
for (int k_idx = 0; k_idx < k; k_idx++) {
accum += alpha
* A[batch_idx * batch_stride_A + k_idx * lda + m_idx]
* B[batch_idx * batch_stride_B + n_idx * ldb + k_idx];
}
C[batch_idx * batch_stride_C + n_idx * ldc + m_idx] = accum;
}
}
}
return result;
}
cudaError_t run_batched_gemm(bool use_array) {
const char* gemm_desc = use_array ? "array" : "strided batched";
std::cout << "Running " << gemm_desc << " gemm" << std::endl;
// Arbitrary problem size
int const m = 520;
int const n = 219;
int const k = 129;
int const batch_count = 17;
// A, B are non-transpose, column major
int const lda = m;
int const ldb = k * batch_count;
int const ldc = m;
int const count_A = batch_count * lda * k;
int const count_B = ldb * n;
int const count_C = batch_count * ldc * n;
// the memory is batched along K dimension
long long int batch_stride_A = static_cast<long long int>(lda) * static_cast<long long int>(k);
long long int batch_stride_B = static_cast<long long int>(k);
long long int batch_stride_C = static_cast<long long int>(ldc) * static_cast<long long int>(n);
// alpha and beta
float alpha = 1.0f;
float beta = 2.0f;
cudaError_t result = cudaSuccess;
// allocate the host memory
std::vector<float> host_A(count_A);
std::vector<float> host_B(count_B);
std::vector<float> host_C(count_C);
std::vector<float> result_C(count_C);
// allocate the device memory
float *A;
float *B;
float *C;
result = cudaMalloc(&A, count_A * sizeof(float));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&B, count_B * sizeof(float));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&C, count_C * sizeof(float));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
// Limit range to avoid floating-point errors
int const kRange = 8;
// fill A
for (int b_idx = 0; b_idx < batch_count; b_idx++) {
for (int col_idx = 0; col_idx < k; col_idx++) {
for (int row_idx = 0; row_idx < m; row_idx++) {
host_A[row_idx + col_idx * lda + b_idx * lda * k] = static_cast<float>((row_idx + col_idx * lda + b_idx * lda * k) % kRange);
}
}
}
// fill B
for (int b_idx = 0; b_idx < batch_count; b_idx++) {
for (int col_idx = 0; col_idx < n; col_idx++) {
for (int row_idx = 0; row_idx < k; row_idx++) {
host_B[row_idx + col_idx * ldb + b_idx * k] = static_cast<float>(((n + k * ldb + batch_count * k) - (row_idx + col_idx * ldb + b_idx * k)) % kRange);
}
}
}
// fill C
for (int b_idx = 0; b_idx < batch_count; b_idx++) {
for (int col_idx = 0; col_idx < n; col_idx++) {
for (int row_idx = 0; row_idx < m; row_idx++) {
host_C[row_idx + col_idx * ldc + b_idx * ldc * n] = 1.f;
}
}
}
// ref memory
std::vector<float> ref_A(host_A);
std::vector<float> ref_B(host_B);
std::vector<float> ref_C(host_C);
// copy host memory to device
result = cudaMemcpy(A, host_A.data(), count_A * sizeof(float), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(B, host_B.data(), count_B * sizeof(float), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(C, host_C.data(), count_C * sizeof(float), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
// run cutlass
if (use_array) {
// allocate the host memory for the pointers to the matrices of the batch
std::vector<float*> host_ptr_A(batch_count);
std::vector<float*> host_ptr_B(batch_count);
std::vector<float*> host_ptr_C(batch_count);
// permute the batch elements to emphasize that GemmArray does not depend on matrices being separated by a fixed stride
std::vector<size_t> permutation = {14, 11, 3, 10, 1, 13, 9, 4, 6, 16, 8, 15, 7, 12, 0, 2, 5};
for (size_t b_idx = 0; b_idx < batch_count; b_idx++) {
host_ptr_A[b_idx] = A + permutation[b_idx] * batch_stride_A;
host_ptr_B[b_idx] = B + permutation[b_idx] * batch_stride_B;
host_ptr_C[b_idx] = C + permutation[b_idx] * batch_stride_C;
}
// allocate the corresponding device memory
float const **ptr_A;
float const **ptr_B;
float **ptr_C;
result = cudaMalloc(&ptr_A, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&ptr_B, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
result = cudaMalloc(&ptr_C, batch_count * sizeof(float*));
if (result != cudaSuccess) {
std::cerr << "cudaMalloc result = " << result << std::endl;
return result;
}
// copy the matrix pointers to the device
result = cudaMemcpy(ptr_A, host_ptr_A.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(ptr_B, host_ptr_B.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cudaMemcpy(ptr_C, host_ptr_C.data(), batch_count * sizeof(float*), cudaMemcpyHostToDevice);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
result = cutlass_array_sgemm(m, n, k, alpha, ptr_A, lda, ptr_B, ldb, ptr_C, ldc, beta, batch_count);
if (result != cudaSuccess)
return result;
} else {
result = cutlass_strided_batched_sgemm(
m, n, k, alpha, A, lda, batch_stride_A, B, ldb, batch_stride_B, C, ldc, batch_stride_C,
beta, batch_count);
if (result != cudaSuccess)
return result;
}
// copy device memory to host
result = cudaMemcpy(result_C.data(), C, count_C * sizeof(float), cudaMemcpyDeviceToHost);
if (result != cudaSuccess) {
std::cerr << "cudaMemcpy result = " << result << std::endl;
return result;
}
//compare with reference code
result = strided_batched_gemm_nn_reference(m, n, k, alpha, ref_A, lda, batch_stride_A, ref_B, ldb, batch_stride_B, ref_C, ldc, batch_stride_C,
beta, batch_count);
if (result != 0)
return result;
// Expect bit-level accuracy for this simple example
if (ref_C != result_C) {
std::cout << "CUTLASS " << gemm_desc << " gemm does not run correctly" << std::endl;
return cudaErrorUnknown;
}
// free memory
result = cudaFree(A);
if (result != cudaSuccess) {
std::cerr << "cudaFree result = " << result << std::endl;
return result;
}
result = cudaFree(B);
if (result != cudaSuccess) {
std::cerr << "cudaFree result = " << result << std::endl;
return result;
}
result = cudaFree(C);
if (result != cudaSuccess) {
std::cerr << "cudaFree result = " << result << std::endl;
return result;
}
return result;
}
int main() {
cudaError_t result = cudaSuccess;
for (bool use_array : {false, true}) {
result = run_batched_gemm(use_array);
if (result == cudaSuccess) {
std::cout << "Passed." << std::endl;
} else {
break;
}
}
// Exit.
return result == cudaSuccess ? 0 : -1;
}