forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy path03_pvc_gemm_streamk.cpp
430 lines (346 loc) · 16.1 KB
/
03_pvc_gemm_streamk.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/***************************************************************************************************
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief CUTLASS Intel PVC Gemm with 2 Tile Hybrid Stream-K Scheduling (https://arxiv.org/pdf/2301.03598)
This example implements a Stream-K scheduled GEMM on Intel PVC hardware. Stream-K avoids tail
effects on performance where conventional tiling wouldn't evenly divide the work across hardware.
Whereas the conventional GEMM implementation requires that each work-group handle a 'whole' tile
(i.e. iterate across the entire range of K), Stream-K permits the scheduler to split tiles along
the K dimension between work-groups. This requires inter work-group communication to combine
partial tile results. The hybrid variant of the StreamK scheduling combines the best of vanilla
GEMM and basic StreamK to maximize performance.
This example demonstrates 3 scheduling modes (DecompositionModes):
- DataParallel - conventional GEMM
- Split-K - split all the output tiles into fixed size chunks along the K dimension
- 2 Tile Hybrid Stream-K - apply basic StreamK scheduling to (sk_tiles = num_wgs + total_tiles % num_wgs)
and split them along the K dimension across multiple workgroups if needed. Apply Data Parallel scheduling
to the remaining tiles (total_tiles - sk_tiles).
Verification for this example is a conventional GEMM, since Split/Stream-K is just a performance optimization of GEMM.
To build & run this example (from your build dir):
$ ninja 03_pvc_gemm_streamk
$ ./examples/sycl/03_pvc_gemm_streamk/03_pvc_gemm_streamk
Call with `--help` for information about available options.
Note: the code may spill registers once compiled which will result in sub-optimal performance. This is because
of an issue inside Intel Graphics Compiler (IGC) related to VectorAliasBBThreshold being debugged internally.
To avoid register spills, build the example by setting the environment variable:
$ export IGC_VectorAliasBBThreshold=10000
*/
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/collective/xe_epilogue.hpp"
#include "cutlass/epilogue/fusion/xe_callbacks.hpp"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/collective/collective_mma.hpp"
#include "cutlass/util/GPU_Clock.hpp"
#include <cute/tensor.hpp>
#include <random>
#include "cutlass/util/command_line.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm_complex.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "sycl_common.hpp"
#include "helper.h"
#include "cutlass/gemm/kernel/xe_persistent_tile_scheduler_params_streamk.hpp"
using namespace cute;
///////////////////////////////////////////////////////////////////////////////////////////////////
#define CUTLASS_SYCL_PROFILING_ENABLED
// Command line options parsing
struct Options {
bool help;
bool error;
bool splitk;
bool dp;
int m, n, k, l, iterations, splits;
float alpha, beta;
Options():
help(false),
error(false),
splitk(false),
dp(false),
m(5120), n(4096), k(4096), l(1), iterations(20), splits(1),
alpha(1.f), beta(0.f)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
if (cmd.check_cmd_line_flag("splitk")) {
splitk = true;
}
if (cmd.check_cmd_line_flag("dp")) {
dp = true;
}
cmd.get_cmd_line_argument("m", m, 5120);
cmd.get_cmd_line_argument("n", n, 4096);
cmd.get_cmd_line_argument("k", k, 4096);
cmd.get_cmd_line_argument("l", l, 1);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("iterations", iterations, 100);
cmd.get_cmd_line_argument("splits", splits, 1);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "PVC GEMM Example\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --dp If specified, uses Data Parallel decomposition\n"
<< " --splitk If specified, uses SplitK decomposition\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n"
<< " --splits=<int> Sets the splitting factor for GEMM\n"
<< " --alpha=<s32> Epilogue scalar alpha\n"
<< " --beta=<s32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Iterations\n\n";
return out;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
template <
class Gemm
>
struct ExampleRunner {
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
using LayoutA = typename Gemm::LayoutA;
using LayoutB = typename Gemm::LayoutB;
using LayoutC = typename Gemm::LayoutC;
using LayoutD = typename Gemm::LayoutD;
using ElementA = typename Gemm::ElementA;
using ElementB = typename Gemm::ElementB;
using ElementAcc = typename Gemm::ElementAccumulator;
using CollectiveEpilogue = typename Gemm::CollectiveEpilogue;
using ElementC = typename Gemm::ElementC;
using ElementOutput = typename CollectiveEpilogue::ElementOutput;
using ElementCompute = typename CollectiveEpilogue::ElementCompute;
using ElementAccumulator = typename CollectiveEpilogue::ElementAccumulator;
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;
int32_t count;
//
// Data members
//
/// Initialization
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
uint64_t seed = 0;
cutlass::DeviceAllocation<ElementA> block_A;
cutlass::DeviceAllocation<ElementB> block_B;
cutlass::DeviceAllocation<ElementC> block_C;
cutlass::DeviceAllocation<ElementOutput> block_D;
cutlass::DeviceAllocation<ElementOutput> block_ref_D;
//
// Methods
//
bool verify(const ProblemShapeType& problem_size, ElementCompute alpha, ElementCompute beta) {
auto [M, N, K, L] = problem_size;
cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({M, K}));
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({K, N}));
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({M, N}));
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutD::packed({M, N}));
cutlass::reference::device::GemmComplex(
{M, N, K},
alpha,
ref_A,
cutlass::ComplexTransform::kNone,
ref_B,
cutlass::ComplexTransform::kNone,
beta,
ref_C,
ref_D,
ElementAccumulator(0),
L, // batch_count
M * K, // batch_stride_A
K * N, // batch_stride_B
M * N, // batch_stride_C
M * N // batch_stride_D
);
syclcompat::wait();
// Check if output from CUTLASS kernel and reference kernel are equal or not
bool passed = cutlass::reference::device::BlockCompareEqual(
block_ref_D.get(), block_D.get(), block_D.size());
return passed;
}
/// Initialize operands to be used in the GEMM and reference GEMM
void initialize(const ProblemShapeType& problem_size) {
auto problem_shape_MNKL = cute::append<4>(problem_size, 1);
auto [M, N, K, L] = problem_shape_MNKL;
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L));
block_A.reset(static_cast<std::size_t>(M) * K * L);
block_B.reset(static_cast<std::size_t>(K) * N * L);
block_C.reset(static_cast<std::size_t>(M) * N * L);
initialize_block(block_A, seed + 2023);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2021);
block_D.reset(static_cast<std::size_t>(M) * N * L);
block_ref_D.reset(static_cast<std::size_t>(M) * N * L);
}
cutlass::Status run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) {
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l};
initialize(problem_size);
typename Gemm::GemmKernel::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
{block_A.get(), stride_A, block_B.get(), stride_B},
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D},
hw_info,
{options.splits, // Setting splits > 1 will force SplitK decomposition
// Set the decomposition mode based on user provided options
options.dp ? cutlass::gemm::kernel::detail::PersistentTileSchedulerXeStreamKParams::DecompositionMode::DataParallel :
options.splitk ? cutlass::gemm::kernel::detail::PersistentTileSchedulerXeStreamKParams::DecompositionMode::SplitK :
cutlass::gemm::kernel::detail::PersistentTileSchedulerXeStreamKParams::DecompositionMode::StreamK}
};
Gemm gemm_op;
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
CUTLASS_CHECK(gemm_op.can_implement(arguments));
CUTLASS_CHECK(gemm_op.initialize(arguments, workspace.get()));
// Run the GEMM
CUTLASS_CHECK(gemm_op.run());
syclcompat::wait();
// Verify that the result is correct
bool passed = verify(problem_size, options.alpha, options.beta);
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl;
if(!passed) return cutlass::Status::kErrorInternal;
if (options.iterations > 0) {
GPU_Clock timer;
float elapsed_time_seconds = 0.f;
for (int i = 0; i < options.iterations; ++i) {
gemm_op.initialize(arguments, workspace.get());
timer.start();
gemm_op.run();
syclcompat::wait();
elapsed_time_seconds += timer.seconds();
}
float cute_time = elapsed_time_seconds / options.iterations;
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12;
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl;
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time*1000);
}
return cutlass::Status::kSuccess;
}
};
int main(int argc, const char** argv)
{
//
// Parse options
//
Options options;
options.parse(argc, argv);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (options.error) {
std::cerr << "Aborting execution." << std::endl;
return -1;
}
//
// Run examples
//
// The KernelHardwareInfo struct holds the number of EUs on the GPU with a given device ID. This
// information is used by the underlying kernel.
cutlass::KernelHardwareInfo hw_info;
// Change device_id to another value if you are running on a machine with multiple GPUs and wish
// to use a GPU other than that with device ID 0.
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
// The code section below describes datatype for input, output matrices and computation between
// elements in input matrices.
using ElementAccumulator = float; // <- data type of accumulator
using ElementComputeEpilogue = float; // <- data type of epilogue operations
using ElementInputA = bfloat16_t; // <- data type of elements in input matrix A
using ElementInputB = bfloat16_t; // <- data type of elements in input matrix B
using ElementOutput = float; // <- data type of elements in output matrix D
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using LayoutD = cutlass::layout::RowMajor;
using GmemTiledCopyA = XE_2D_U16x32x32_LD_N;
using GmemTiledCopyB = XE_2D_U16x32x32_LD_V;
// Workgroup-level tile
using TileShape = Shape<_256, _256, _32>;
using TiledMma =
typename TiledMMAHelper<MMA_Atom<XE_8x16x16_F32BF16BF16F32_TT>, Layout<TileShape>,
Layout<Shape<_8, _4, _1>, Stride<_4, _1, _0>>>::TiledMMA;
constexpr int PipelineStages = 2;
using GEMMDispatchPolicy = cutlass::gemm::MainloopIntelPVC<PipelineStages, cutlass::gemm::KernelPVCCooperative>;
using EpilogueDispatchPolicy = cutlass::epilogue::IntelPVCEpilogue;
using EpilogueOp = cutlass::epilogue::fusion::LinearCombination<ElementOutput, ElementComputeEpilogue,
ElementAccumulator, ElementAccumulator, cutlass::FloatRoundStyle::round_to_nearest>;
using FusionCallBacks = cutlass::epilogue::fusion::FusionCallbacks<EpilogueDispatchPolicy, EpilogueOp, TileShape,
decltype(tile_shape(TiledMma()))>;
using CollectiveEpilogue = cutlass::epilogue::collective::CollectiveEpilogue<
EpilogueDispatchPolicy,
TileShape,
ElementAccumulator,
cutlass::gemm::TagToStrideC_t<LayoutC>,
ElementOutput,
cutlass::gemm::TagToStrideC_t<LayoutD>,
FusionCallBacks,
XE_2D_U32x8x16_LD_N,
void, void,
XE_2D_U32x8x16_ST_N,
void, void>;
// Mainloop
using CollectiveMainloop = cutlass::gemm::collective::CollectiveMma<
GEMMDispatchPolicy,
TileShape,
ElementInputA,
cutlass::gemm::TagToStrideA_t<LayoutA>,
ElementInputB,
cutlass::gemm::TagToStrideB_t<LayoutB>,
TiledMma,
GmemTiledCopyA, void, void, cute::identity, // A
GmemTiledCopyB, void, void, cute::identity // B
>;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::StreamKScheduler
>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
ExampleRunner<Gemm> runner;
CUTLASS_CHECK(runner.run(options, hw_info));
return 0;
}