forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtensor_algorithms.hpp
166 lines (151 loc) · 5.11 KB
/
tensor_algorithms.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/***************************************************************************************************
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/** Common algorithms on (hierarchical) tensors */
#pragma once
#include <cute/config.hpp>
#include <cute/tensor_impl.hpp>
namespace cute
{
//
// for_each
//
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout> const& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
op(tensor(i));
}
}
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
op(tensor(i));
}
}
// Accept mutable temporaries
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
for_each(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
{
return for_each(tensor, op);
}
//
// transform
//
// Similar to std::transform but does not return number of elements affected
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<Engine,Layout>& tensor, UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor); ++i) {
tensor(i) = op(tensor(i));
}
}
// Accept mutable temporaries
template <class Engine, class Layout, class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<Engine,Layout>&& tensor, UnaryOp&& op)
{
return transform(tensor, op);
}
// Similar to std::transform transforms one tensors and assigns it to another
template <class EngineIn, class LayoutIn,
class EngineOut, class LayoutOut,
class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn, LayoutIn > const& tensor_in,
Tensor<EngineOut,LayoutOut> & tensor_out,
UnaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor_in); ++i) {
tensor_out(i) = op(tensor_in(i));
}
}
// Accept mutable temporaries
template <class EngineIn, class LayoutIn,
class EngineOut, class LayoutOut,
class UnaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn, LayoutIn > const& tensor_in,
Tensor<EngineOut,LayoutOut> && tensor_out,
UnaryOp&& op)
{
return transform(tensor_in, tensor_out, op);
}
// Similar to std::transform with a binary operation
// Takes two tensors as input and one tensor as output.
// Applies the binary_op to tensor_in1 and tensor_in2 and
// assigns it to tensor_out
template <class EngineIn1, class LayoutIn1,
class EngineIn2, class LayoutIn2,
class EngineOut, class LayoutOut,
class BinaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1,
Tensor<EngineIn2,LayoutIn2> const& tensor_in2,
Tensor<EngineOut,LayoutOut> & tensor_out,
BinaryOp&& op)
{
CUTE_UNROLL
for (int i = 0; i < size(tensor_in1); ++i) {
tensor_out(i) = op(tensor_in1(i), tensor_in2(i));
}
}
// Accept mutable temporaries
template <class EngineIn1, class LayoutIn1,
class EngineIn2, class LayoutIn2,
class EngineOut, class LayoutOut,
class BinaryOp>
CUTE_HOST_DEVICE constexpr
void
transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1,
Tensor<EngineIn2,LayoutIn2> const& tensor_in2,
Tensor<EngineOut,LayoutOut> && tensor_out,
BinaryOp&& op)
{
return transform(tensor_in1, tensor_in2, tensor_out, op);
}
} // end namespace cute