forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathgemm.h
380 lines (309 loc) · 13.1 KB
/
gemm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/semaphore.h"
#include "cutlass/arch/arch.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate
typename Epilogue_, ///! Epilogue
typename ThreadblockSwizzle_, ///! Threadblock swizzling function
bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled.
>
struct Gemm {
using Mma = Mma_;
using Epilogue = Epilogue_;
using OutputOp = typename Epilogue::OutputOp;
using ThreadblockSwizzle = ThreadblockSwizzle_;
static bool const kSplitKSerial = SplitKSerial;
/// Warp count (concept: GemmShape)
using WarpCount = typename Mma::WarpCount;
static int const kThreadCount = 32 * WarpCount::kCount;
/// Parameters structure
struct Params {
cutlass::gemm::GemmCoord problem_size;
cutlass::gemm::GemmCoord grid_tiled_shape;
int swizzle_log_tile;
typename Mma::IteratorA::Params params_A;
typename Mma::IteratorA::TensorRef ref_A;
typename Mma::IteratorB::Params params_B;
typename Mma::IteratorB::TensorRef ref_B;
typename Epilogue::OutputTileIterator::Params params_C;
typename Epilogue::OutputTileIterator::TensorRef ref_C;
typename Epilogue::OutputTileIterator::Params params_D;
typename Epilogue::OutputTileIterator::TensorRef ref_D;
typename OutputOp::Params output_op;
int *semaphore;
int gemm_k_size;
// For gather+scatter operations
int const *gather_A_indices;
int const *gather_B_indices;
int const *scatter_D_indices;
//
// Methods
//
CUTLASS_HOST_DEVICE
Params(): swizzle_log_tile(0), semaphore(0), gemm_k_size(0) { }
CUTLASS_HOST_DEVICE
Params(
cutlass::gemm::GemmCoord const & problem_size,
cutlass::gemm::GemmCoord const & grid_tiled_shape,
typename Mma::IteratorA::TensorRef ref_A,
typename Mma::IteratorB::TensorRef ref_B,
typename Epilogue::OutputTileIterator::TensorRef ref_C,
typename Epilogue::OutputTileIterator::TensorRef ref_D,
typename OutputOp::Params output_op = typename OutputOp::Params(),
int *workspace = nullptr,
int const *gather_A_indices = nullptr,
int const *gather_B_indices = nullptr,
int const *scatter_D_indices = nullptr
):
problem_size(problem_size),
grid_tiled_shape(grid_tiled_shape),
swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)),
params_A(ref_A.layout()),
ref_A(ref_A),
params_B(ref_B.layout()),
ref_B(ref_B),
params_C(ref_C.layout()),
ref_C(ref_C),
params_D(ref_D.layout()),
ref_D(ref_D),
output_op(output_op),
gather_A_indices(gather_A_indices),
gather_B_indices(gather_B_indices),
scatter_D_indices(scatter_D_indices) {
int total_gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK;
int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k();
gemm_k_size = gemm_k_iterations * Mma::Shape::kK;
semaphore = workspace;
}
};
/// Shared memory storage structure
union SharedStorage {
typename Mma::SharedStorage main_loop;
typename Epilogue::SharedStorage epilogue;
};
//
// Methods
//
CUTLASS_HOST_DEVICE
Gemm() { }
/// Determines whether kernel satisfies alignment
CUTLASS_HOST_DEVICE
static Status can_implement(
cutlass::gemm::GemmCoord const & problem_size,
typename Mma::IteratorA::TensorRef ref_A,
typename Mma::IteratorB::TensorRef ref_B,
typename Epilogue::OutputTileIterator::TensorRef ref_C,
typename Epilogue::OutputTileIterator::TensorRef ref_D) {
static int const kAlignmentA = (platform::is_same<typename Mma::IteratorA::Layout,
layout::ColumnMajorInterleaved<32>>::value)
? 32
: (platform::is_same<typename Mma::IteratorA::Layout,
layout::ColumnMajorInterleaved<64>>::value)
? 64
: Mma::IteratorA::AccessType::kElements;
static int const kAlignmentB = (platform::is_same<typename Mma::IteratorB::Layout,
layout::RowMajorInterleaved<32>>::value)
? 32
: (platform::is_same<typename Mma::IteratorB::Layout,
layout::RowMajorInterleaved<64>>::value)
? 64
: Mma::IteratorB::AccessType::kElements;
static int const kAlignmentC = (platform::is_same<typename Epilogue::OutputTileIterator::Layout,
layout::ColumnMajorInterleaved<32>>::value)
? 32
: (platform::is_same<typename Epilogue::OutputTileIterator::Layout,
layout::ColumnMajorInterleaved<64>>::value)
? 64
: Epilogue::OutputTileIterator::kElementsPerAccess;
if (!TensorRef_aligned(ref_A, kAlignmentA)) {
return Status::kErrorMisalignedOperand;
}
if (!TensorRef_aligned(ref_B, kAlignmentB)) {
return Status::kErrorMisalignedOperand;
}
if (!TensorRef_aligned(ref_C, kAlignmentC)) {
return Status::kErrorMisalignedOperand;
}
if (!TensorRef_aligned(ref_D, kAlignmentC)) {
return Status::kErrorMisalignedOperand;
}
return Status::kSuccess;
}
/// Executes one GEMM
CUTLASS_DEVICE
void operator()(Params const ¶ms, SharedStorage &shared_storage) {
// Compute threadblock location
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord threadblock_tile_offset =
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
// Early exit if CTA is out of range
if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||
params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {
return;
}
// Compute initial location in logical coordinates
cutlass::MatrixCoord tb_offset_A{
threadblock_tile_offset.m() * Mma::Shape::kM,
threadblock_tile_offset.k() * params.gemm_k_size,
};
cutlass::MatrixCoord tb_offset_B{
threadblock_tile_offset.k() * params.gemm_k_size,
threadblock_tile_offset.n() * Mma::Shape::kN
};
// Problem size is a function of threadblock index in the K dimension
int problem_size_k = min(
params.problem_size.k(),
(threadblock_tile_offset.k() + 1) * params.gemm_k_size);
// Compute threadblock-scoped matrix multiply-add
int gemm_k_iterations = (problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK;
// Compute position within threadblock
int thread_idx = ThreadIdxX();
// Construct iterators to A and B operands
typename Mma::IteratorA iterator_A(
params.params_A,
params.ref_A.data(),
{params.problem_size.m(), problem_size_k},
thread_idx,
tb_offset_A,
params.gather_A_indices);
typename Mma::IteratorB iterator_B(
params.params_B,
params.ref_B.data(),
{problem_size_k, params.problem_size.n()},
thread_idx,
tb_offset_B,
params.gather_B_indices);
// Broadcast the warp_id computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = canonical_warp_idx_sync();
int lane_idx = ThreadIdxX() % 32;
//
// Main loop
//
// Construct thread-scoped matrix multiply
Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);
typename Mma::FragmentC accumulators;
accumulators.clear();
if (!kSplitKSerial || gemm_k_iterations > 0) {
// Compute threadblock-scoped matrix multiply-add
mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators);
}
//
// Epilogue
//
OutputOp output_op(params.output_op);
//
// Masked tile iterators constructed from members
//
threadblock_tile_offset =
threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);
//assume identity swizzle
MatrixCoord threadblock_offset(
threadblock_tile_offset.m() * Mma::Shape::kM,
threadblock_tile_offset.n() * Mma::Shape::kN
);
int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m();
// Construct the semaphore.
Semaphore semaphore(params.semaphore + block_idx, thread_idx);
// If performing a reduction via split-K, fetch the initial synchronization
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
// Fetch the synchronization lock initially but do not block.
semaphore.fetch();
// Indicate which position in a serial reduction the output operator is currently updating
output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k());
}
// Tile iterator loading from source tensor.
typename Epilogue::OutputTileIterator iterator_C(
params.params_C,
params.ref_C.data(),
params.problem_size.mn(),
thread_idx,
threadblock_offset,
params.scatter_D_indices
);
// Tile iterator writing to destination tensor.
typename Epilogue::OutputTileIterator iterator_D(
params.params_D,
params.ref_D.data(),
params.problem_size.mn(),
thread_idx,
threadblock_offset,
params.scatter_D_indices
);
Epilogue epilogue(
shared_storage.epilogue,
thread_idx,
warp_idx,
lane_idx);
// Wait on the semaphore - this latency may have been covered by iterator construction
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
// For subsequent threadblocks, the source matrix is held in the 'D' tensor.
if (threadblock_tile_offset.k()) {
iterator_C = iterator_D;
}
semaphore.wait(threadblock_tile_offset.k());
}
// Execute the epilogue operator to update the destination tensor.
epilogue(output_op, iterator_D, accumulators, iterator_C);
//
// Release the semaphore
//
if (kSplitKSerial && params.grid_tiled_shape.k() > 1) {
int lock = 0;
if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) {
// The final threadblock resets the semaphore for subsequent grids.
lock = 0;
}
else {
// Otherwise, the semaphore is incremented
lock = threadblock_tile_offset.k() + 1;
}
semaphore.release(lock);
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass