-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathtransformer.py
32 lines (26 loc) · 1.32 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch.nn as nn
from .attention import MultiHeadedAttention
from .utils import SublayerConnection, PositionwiseFeedForward
class TransformerBlock(nn.Module):
"""
Bidirectional Encoder = Transformer (self-attention)
Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
"""
def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
"""
:param hidden: hidden size of transformer
:param attn_heads: head sizes of multi-head attention
:param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
:param dropout: dropout rate
"""
super().__init__()
self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, mask):
x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
# x = self.output_sublayer(x, self.feed_forward)
x = self.output_sublayer(x, lambda _x: self.feed_forward.forward(_x))
return self.dropout(x)