-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathKNN_python.py
113 lines (87 loc) · 2.98 KB
/
KNN_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#coding:utf-8
#Author:codewithzichao
#E-mail:[email protected]
'''
数据集:Mnist数据集(只使用了1000来训练,只使用了1000来测试。)
结果(准确率):0.738
时间:28.6643168926239
'''
import numpy as np
import time
def loadData(fileName):
'''
加载数据
:param fileName: 数据路径
:return: 返回特征向量与标签类别
'''
data_list=[]
label_list=[]
with open(fileName,"r") as f:
for line in f.readlines():
curline=line.strip().split(",")
data_list.append([int(feature) for feature in curline[1:]])
label_list.append(int(curline[0]))
data_matrix=np.array(data_list)
label_matrix=np.array(label_list)
return data_matrix,label_matrix
class KNN(object):
def __init__(self,train_data,train_label,K):
'''
构造函数
:param train_data: 训练集的特征向量
:param train_label: 训练集的类别向量
:param K: 指定的K值
'''
self.train_data=train_data
self.train_label=train_label
self.input_num=self.train_data.shape[0]
self.feature=self.train_data.shape[1]
self.K=K
def cal_distance(self,x1,x2):
'''
计算两个样本之间的距离,使用欧式距离
:param x1: 第一个样本
:param x2: 第二步样本
:return: 样本之间的距离
'''
return np.sqrt(np.sum(np.square(x1-x2)))
def get_K(self,x):
dist_group=np.zeros(self.input_num)
for i in range(self.input_num):
x1=self.train_data[i]
dist=self.cal_distance(x,x1)
dist_group[i]=dist
topK=np.argsort(dist_group)[:self.K]#升序排序
labeldist=np.zeros(10)#10个标签,在每一个标签对应的位置上加1
for i in range(len(topK)):
labeldist[int(self.train_label[topK[i]])]+=1
return np.argmax(labeldist)
def test(self,test_data,test_label):
'''
在测试集上测试
:param test_data: 测试集的特征向量
:param test_label: 测试集的标签向量
:return: 准确率
'''
error=0
test_num=test_data.shape[0]
for i in range(test_num):
print(f"the current sample is {i+1},the total samples is{test_num}.")
x=test_data[i]
y=self.get_K(x)
if(y!=test_label[i]):
error+=1
accuracy=(test_num-error)/test_num
return accuracy
if __name__=="__main__":
start=time.time()
print("start load data.")
train_data,train_label=loadData("../MnistData/mnist_train.csv")
test_data,test_label=loadData("../MnistData/mnist_test.csv")
print("finished load data.")
a=KNN(train_data[:1000],train_label[:1000],30)
print("finished training.")
accuracy=a.test(test_data[:1000],test_label[:1000])
print(f"the accuracy is {accuracy}.")
end=time.time()
print(f"the total time is {end-start}.")