-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathKNN_sklearn.py
59 lines (44 loc) · 1.58 KB
/
KNN_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#coding:utf-8
#Author:codewithzichao
#E-mail:[email protected]
'''
数据集:Mnist数据集(只使用了1000来训练,只使用了1000来测试。)
结果(准确率):0.799
时间:16.832828998565674
---------------------------
果然,自己写的python没有编写kdtree等部分,效果与时间上都比不上sklearn。
'''
import numpy as np
import time
from sklearn.neighbors import KNeighborsClassifier
def loadData(fileName):
'''
加载数据
:param fileName: 数据路径
:return: 返回特征向量与标签类别
'''
data_list=[]
label_list=[]
with open(fileName,"r") as f:
for line in f.readlines():
curline=line.strip().split(",")
data_list.append([int(feature) for feature in curline[1:]])
label_list.append(int(curline[0]))
data_matrix=np.array(data_list)
label_matrix=np.array(label_list)
return data_matrix,label_matrix
if __name__=="__main__":
start = time.time()
print("start load data.")
train_data, train_label = loadData("../MnistData/mnist_train.csv")
test_data, test_label = loadData("../MnistData/mnist_test.csv")
print("finished load data.")
knn=KNeighborsClassifier(n_neighbors=10)
knn.fit(train_data[:1000],train_label[:1000])
prediction=knn.predict(test_data[:1000])
for i in range(1000):
print(f"predict is {prediction[i]},the true is {test_label[i]}.")
accuracy=knn.score(test_data[:1000],test_label[:1000])
print(f"the accuracy is {accuracy}.")
end=time.time()
print(f"the total time is {end-start}.")