-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathNaive_Bayes_sklearn.py
39 lines (29 loc) · 1.15 KB
/
Naive_Bayes_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# coding=utf-8
# Author:codewithzichao
# E-mail:[email protected]
# Date:2019-12-30
import numpy as np
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
def loadData(fileName):
data_list = []
label_list = []
with open(fileName, "r") as f:
for line in f.readlines():
curline = line.strip().split(",")
label_list.append(int(curline[0]))
data_list.append([int(int(feature) > 128) for feature in curline[1:]]) # 二值化,保证每一个特征只能取到0和1两个值
data_matrix = np.array(data_list)
label_matrix = np.array(label_list)
return data_matrix, label_matrix
if __name__=="__main__":
print("start loading data.")
train_data, train_label = loadData("../MnistData/mnist_train.csv")
test_data, test_label = loadData("../MnistData/mnist_test.csv")
print("finished load data.")
clf=MultinomialNB()
clf.fit(train_data,train_label)
accuracy=clf.score(test_data,test_label)
print(f"the accuracy is {accuracy}.")
test_predict=clf.predict(test_data)
print(classification_report(test_label, test_predict))