-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathSVM_python.py
302 lines (245 loc) · 9.57 KB
/
SVM_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# coding=utf-8
# Author:codewithzichao
# Date:2019-12-20
# E-mail:[email protected]
'''
数据集:Mnist(实际只使用了前1000个,当然可以全部使用,如果算力够的话。)
准确率:0.98
时间:0.98
'''
import numpy as np
import time
def loadData(fileName):
'''
加载数据
:param fileName:路径名
:return: 返回特征向量与标签类别
在这里需要注意的是:最后使用要np.array,以保证维度。
当然使用np.mat等也没有问题,但是相关操作容易搞混。
'''
data_list = []
label_list = []
with open(fileName, "r") as f:
for line in f.readlines():
curline = line.strip().split(",")
if (int(curline[0]) ==0):
label_list.append(1)
else:
label_list.append(-1)
data_list.append([int(num)/255 for num in curline[1:]])
data_matrix = np.array(data_list)
label_matrix = np.array(label_list)
return data_matrix, label_matrix
class SVM(object):
def __init__(self, data_matrix, label_matrix, sigma, C, toler, iteration):
'''
构造函数
:param data_matrix: 训练数据集矩阵
:param label_matrix: 训练数据标签矩阵
:param sigma: 高斯核函数的sigma
:param C: 惩罚参数
:param toler: 松弛变量
'''
self.train_data = data_matrix
self.train_label = label_matrix.T
self.input_num,self.feature_num = np.shape(self.train_data)
self.sigma = sigma
self.C = C
self.toler = toler
self.K = self.kernel_for_train()
self.b = 0
self.alpha = np.zeros(self.input_num)
self.E = np.zeros(self.input_num)
self.iteration = iteration
self.support_vector = []
def kernel_for_train(self):
'''
计算核函数
使用的是高斯核 详见“7.3.3 常用核函数” 式7.90
:return: 高斯核矩阵
'''
k=np.zeros((self.input_num,self.input_num))
for i in range(self.input_num):
if i % 100 == 0:
print('construct the kernel:', i, self.input_num)
X = self.train_data[i, :]
for j in range(i, self.input_num):
Z = self.train_data[j, :]
result =np.matmul((X - Z) , (X - Z).T)
result = np.exp(-1 * result / (2 * self.sigma**2))
k[i][j] = result
k[j][i] = result
#返回高斯核矩阵
return k
def is_satisfied_kkt_condition(self, i):
'''
判断alpha_i是否满足KKT条件
:param i: 索引第i个alpha
:return: 返回true/false
'''
g_xi = self.cal_g_xi(i)
y_i = self.train_label[i]
if ((abs(self.alpha[i]) < self.toler) and (y_i * g_xi >= 1)):
return True
elif (abs(self.alpha[i] - self.C) < self.toler and (y_i * g_xi <= 1)):
return True
elif (self.alpha[i] > -self.toler) and (self.alpha[i] < (self.C + self.toler)) \
and (abs(y_i * g_xi - 1) < self.toler):
return True
return False
def cal_g_xi(self, i):
'''
计算g_xi,从而辅助判断变量是不是满足KKT条件
:return: 返回g_xi的值,是标量
'''
g_xi = 0
index = [i for i,alpha in enumerate(self.alpha) if alpha!=0]
for j in index:
g_xi += self.alpha[j] * self.train_label[j] * self.K[j][i]
g_xi += self.b
return g_xi
def cal_ei(self, i):
'''
计算ei的值,标量
:param i: 表示第i个样本,i=1,2
:return: 返回Ei
'''
return self.cal_g_xi(i) - self.train_label[i]
def cal_alpha_j(self, e1, i):
'''
在SMO中,选择第2个变量
:param e1: 第一个变量的e1
:param i: 第一个变量alpha1的下标
:return: 返回E2,第二个遍历变量的下标
'''
e2 = 0
max_e1_e2 = -1
max_index = -1
none_0_e = [i for i, ei in enumerate(self.E) if ei != 0]
for j in none_0_e:
# 计算E2
e2_tmp = self.cal_ei(j)
# 如果|E1-E2|大于目前最大值
if abs(e1 - e2_tmp) > max_e1_e2:
# 更新最大值
max_e1_e2 = abs(e1 - e2_tmp)
# 更新最大值E2
e2 = e2_tmp
# 更新最大值E2的索引j
max_index = j
# 如果列表中没有非0元素了(对应程序最开始运行时的情况)
if max_index == -1:
max_index = i
while max_index == i:
# 获得随机数,如果随机数与第一个变量的下标i一致则重新随机
max_index = int(np.random.uniform(0, self.input_num))
# 获得E2
e2 = self.cal_ei(max_index)
return e2, max_index
def train(self):
cur_iter_step = 0
params_changed = 1
#结束循环条件:1.达到循环次数;2.当参数不再发生变化的时候,说明收敛了
while ((cur_iter_step < self.iteration) and (params_changed > 0)):
print(f"the current iteration is {cur_iter_step},the total iteration is {self.iteration}.")
cur_iter_step += 1
params_changed = 0
for i in range(self.input_num):
if (self.is_satisfied_kkt_condition(i) == False):
e1 = self.cal_ei(i)
e2, j = self.cal_alpha_j(e1, i)
y1 = self.train_label[i]
y2 = self.train_label[j]
alpha_old_1 = self.alpha[i]
alpha_old_2 = self.alpha[j]
if (y1 != y2):
L = max(0, alpha_old_2 - alpha_old_1)
H = min(self.C, self.C - alpha_old_1 + alpha_old_2)
else:
L = max(0, alpha_old_1 + alpha_old_2 - self.C)
H = min(self.C, alpha_old_1 + alpha_old_2)
if (L == H):
continue
k11 = self.K[1][1]
k22 = self.K[2][2]
k12 = self.K[1][2]
k21 = self.K[2][1]
alpha_new_2 = alpha_old_2 + y2 * (e1 - e2) / (k11 + k22 - 2 * k12)
if (alpha_new_2 < L):
alpha_new_2 = L
elif (alpha_new_2 > H):
alpha_new_2 = H
alpha_new_1 = alpha_old_1 + y1 * y2 * (alpha_old_2 - alpha_new_2)
b1_new = -1 * e1 - y1 * k11 * (alpha_new_1 - alpha_old_1) \
- y2 * k21 * (alpha_new_2 - alpha_old_2) + self.b
b2_new = -1 * e2 - y1 * k12 * (alpha_new_1 - alpha_old_1) \
- y2 * k22 * (alpha_new_2 - alpha_old_2) + self.b
if (alpha_new_1 > 0) and (alpha_new_1 < self.C):
b_new = b1_new
elif (alpha_new_2 > 0) and (alpha_new_2 < self.C):
b_new = b2_new
else:
b_new = (b1_new + b2_new) / 2
self.alpha[i] = alpha_new_1
self.alpha[j] = alpha_new_2
self.b = b_new
self.E[i] = self.cal_ei(i)
self.E[j] = self.cal_ei(j)
if abs(alpha_new_2 - alpha_old_2) >= 0.00001:
params_changed += 1
for i in range(self.input_num):
# 如果α>0,说明是支持向量
if self.alpha[i] > 0:
# 将支持向量的索引保存起来
self.support_vector.append(i)
def kernel_for_predict(self, x, z):
'''
计算核函数,用于测试集与开发集
:param x:向量x
:param z: 向量z
:return: 返回核函数
'''
result = np.matmul((x - z), (x - z).T)
result = np.exp(-result / (2 * self.sigma ** 2))
return result
def predict(self, x):
'''
预测单个样本的类别
:param x: 样本的特征向量
:return: 样本的预测类别
'''
result = 0
for i in self.support_vector:
result_temp = self.kernel_for_predict(x, self.train_data[i])
result += self.alpha[i] * self.train_label[i] * result_temp
result += self.b
return np.sign(result)
def test(self, test_data, test_label):
'''
在测试集上测试模型
:param test_train:测试集的特征向量
:param test_label:测试集的类别
:return:准确率
'''
test_label=test_label.T
error = 0
test_input_num = test_data.shape[0]
for i in range(test_input_num):
result = self.predict(test_data[i])
if (result != test_label[i]):
error += 1
else:
continue
return (test_input_num - error) / test_input_num
if __name__ == "__main__":
start = time.time()
train_data, train_label = loadData("../MnistData/mnist_train.csv")
test_data, test_label = loadData("../MnistData/mnist_test.csv")
print("finished load data.")
svm = SVM(train_data[:1000], train_label[:1000], sigma=10, C=200, toler=0.001,iteration=50)
svm.train()
print("finish the training.")
accuracy = svm.test(test_data[:100], test_label[:100])
print(f"accuracy is {accuracy}.")
end = time.time()
print(f"the total time is {end - start}.")