-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathSVM_sklearn.py
40 lines (33 loc) · 1.08 KB
/
SVM_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# coding=utf-8
# Author:codewithzichao
# Date:2019-12-20
# E-mail:[email protected]
import numpy as np
import time
from sklearn import svm
def loadData(fileName):
data_list = []
label_list = []
with open(fileName, "r") as f:
for line in f.readlines():
curline = line.strip().split(",")
if (int(curline[0]) == 0):
label_list.append(1)
else:
label_list.append(-1)
data_list.append([int(feature) for feature in curline[1:]])
data_matrix = np.array(data_list)
label_matrix = np.array(label_list)
return data_matrix, label_matrix
if __name__ == "__main__":
train_data, train_label = loadData("../MnistData/mnist_train.csv")
test_data, test_label = loadData("../Mnistdata/mnist_test.csv")
print("finished load data.")
#创建模型
clf = svm.SVC()
#训练模型
clf.fit(train_data[:1000], train_label[:1000])
print("finished training.")
#在测试集上测试模型
accuracy = clf.score(test_data, test_label)
print(f"the accuracy is {accuracy}.")