|
| 1 | +#coding:utf-8 |
| 2 | +#Author:codewithzichao |
| 3 | + |
| 4 | + |
| 5 | +# mnist_train:60000 |
| 6 | +# mnist_test:10000 |
| 7 | +# acc: 0.8636 |
| 8 | +# time: 583.6889300346375 |
| 9 | + |
| 10 | + |
| 11 | +import pandas as pd |
| 12 | +import numpy as np |
| 13 | +import time |
| 14 | +from collections import Counter |
| 15 | + |
| 16 | + |
| 17 | + |
| 18 | +def loadData(fileName): |
| 19 | + #从文件中读取数据 |
| 20 | + data=pd.read_csv(fileName,header=None) |
| 21 | + # 将数据从dataframe转化为ndarray |
| 22 | + data=data.values |
| 23 | + #数据第一行为分类结果 |
| 24 | + y_label=data[:,0] |
| 25 | + x_label=data[:,1:] |
| 26 | + |
| 27 | + #数据二值化,返回数据 |
| 28 | + #因为xi的取值范围为0-255,则计算p(X=xi\Y=y)的时候可能性过多,计算过于繁杂 |
| 29 | + # 所以进行二值化 |
| 30 | + # y_label为np.ndarray,x_label为np.ndarray |
| 31 | + |
| 32 | + x_label[x_label<128]=0 |
| 33 | + x_label[x_label>=128]=1 |
| 34 | + |
| 35 | + # mp.ndarray |
| 36 | + return x_label,y_label |
| 37 | + |
| 38 | +# 计算每一列的信息熵 |
| 39 | +def calcul_H_D(column): |
| 40 | + ''' |
| 41 | + :param column: 需要求信息增益的列 |
| 42 | + :return: 信息熵 |
| 43 | + ''' |
| 44 | + # 计算这一列有几种取值 |
| 45 | + types=set([i for i in column]) # set中不包含相同元素 |
| 46 | + |
| 47 | + type_dic={} #用来计数每个Di有多少种 |
| 48 | + HD=0 |
| 49 | + # 初始化type_dic |
| 50 | + |
| 51 | + for i in types: |
| 52 | + type_dic[i]=0 |
| 53 | + # HD=(Di)/D * log(Di/D) |
| 54 | + for i in range(len(column)): |
| 55 | + type_dic[column[i]]+=1 |
| 56 | + for i in type_dic: |
| 57 | + HD=HD+(-1)*type_dic[i]/len(column)*np.log2(type_dic[i]/len(column)) |
| 58 | + return HD |
| 59 | + |
| 60 | + |
| 61 | +# 计算条件熵 |
| 62 | +# H_D_A=Di/D*H(Di |
| 63 | +def calcul_H_D_A(column, y_label): |
| 64 | + ''' |
| 65 | + :param column: 特征A所在列 需要np.array |
| 66 | + :param y_label: 分类结果类,D 需要np.array |
| 67 | + :return: 条件熵 |
| 68 | + ''' |
| 69 | + |
| 70 | + #计算特征A的几种取值 |
| 71 | + types=set([i for i in column]) |
| 72 | + |
| 73 | + # 计算出特征Ai的条件下的信息熵 |
| 74 | + H_D_Ai={} |
| 75 | + |
| 76 | + type_dic = {} # 用来计数每个Di有多少种 |
| 77 | + for i in types: |
| 78 | + #初始化type_dic |
| 79 | + type_dic[i]=0 |
| 80 | + |
| 81 | + # 计算特定Ai条件下的条件熵 |
| 82 | + # y_label[column==i]得到y_label中A中特征为Ai的分类结果 |
| 83 | + H_D_Ai[i]=calcul_H_D(y_label[column == i]) |
| 84 | + |
| 85 | + # 用于计算出得到Di,计算Di/D |
| 86 | + for i in range(len(column)): |
| 87 | + type_dic[column[i]]+=1 |
| 88 | + |
| 89 | + # 计算条件熵 |
| 90 | + H_D_A=0 |
| 91 | + for i in types: |
| 92 | + H_D_A+=type_dic[i]/len(column)*H_D_Ai[i] |
| 93 | + return H_D_A |
| 94 | + |
| 95 | + |
| 96 | +# 找到信息增益最大的列 |
| 97 | +def findMaxFeature(X_trian,y_train): |
| 98 | + ''' |
| 99 | + :param X_trian: 训练集D |
| 100 | + :param y_train: 训练集标签 |
| 101 | + :return: 列 |
| 102 | + ''' |
| 103 | + |
| 104 | + features=X_trian.shape[1] |
| 105 | + |
| 106 | + H_D=0 |
| 107 | + H_D_A=0 |
| 108 | + max_Gain=-10000 #最大信息增益 |
| 109 | + max_feature=-1 #最大信息增益的列 |
| 110 | + |
| 111 | + # 样本的熵 |
| 112 | + H_D = calcul_H_D(y_train) |
| 113 | + |
| 114 | + for feature in range(features): # 对列进行遍历 |
| 115 | + # 注意是X_trian[:, feature],别忘了:定位行 |
| 116 | + H_D_A=calcul_H_D_A(X_trian[:, feature], y_train) |
| 117 | + |
| 118 | + if H_D-H_D_A>max_Gain: |
| 119 | + max_Gain=H_D-H_D_A |
| 120 | + max_feature=feature |
| 121 | + return max_feature,max_Gain |
| 122 | + |
| 123 | + |
| 124 | +# 对于一列数据,找到出现最多的类,作为这一列的标记 |
| 125 | +def findCluster(column): |
| 126 | + # 使用counter,对每一个出现的特征计数 |
| 127 | + ans=Counter(column) |
| 128 | + # 找到出现次数第一多的 |
| 129 | + cluster=ans.most_common(1)[0][0] |
| 130 | + return cluster |
| 131 | + |
| 132 | + |
| 133 | +# 对于样本根据特征进行切分 |
| 134 | +def cutData(X_train,y_train,Ag,ai): |
| 135 | + ''' |
| 136 | + :param X_train: 训练样本 |
| 137 | + :param y_train: 样本标签 |
| 138 | + :param Ag: 需要切分特征所在的列 |
| 139 | + :param ai: 切分特征 |
| 140 | + :return: 切分后的训练样本,标签 |
| 141 | + ''' |
| 142 | + |
| 143 | + rest_train_data=[] #切分之后的训练集 |
| 144 | + rest_train_label=[] #切分之后的标签 |
| 145 | + |
| 146 | + |
| 147 | + for i in range(len(X_train)): |
| 148 | + if X_train[i][Ag]==ai: |
| 149 | + # a = np.array([[1, 2, 3], [1, 2, 3]]) |
| 150 | + # b = np.array([[1, 2, 3], [4, 5, 6]]) |
| 151 | + # a + b |
| 152 | + # out:array([[2, 4, 6], |
| 153 | + # [5, 7, 9]]) |
| 154 | + # 对样本进行切分,依据Ag列的ai特征 |
| 155 | + # 切分完之后的样本没有了Ag列 |
| 156 | + # 总行数为Ag中ai特征的行 |
| 157 | + |
| 158 | + |
| 159 | + rest_train_data.append(list(X_train[i][0:Ag])+list(X_train[i][Ag+1:])) |
| 160 | + rest_train_label.append(y_train[i]) |
| 161 | + return np.array(rest_train_data),np.array(rest_train_label) |
| 162 | + |
| 163 | + |
| 164 | + |
| 165 | +def creTree(X_train,y_train): |
| 166 | + # 当信息增益小于0.3,就置T为单节点树 |
| 167 | + epsilon=0.1 |
| 168 | + |
| 169 | + print(f'create tree,data_length={len(X_train)}') |
| 170 | + |
| 171 | + # 查看总共还有多少分类 |
| 172 | + clusters=set([i for i in y_train]) |
| 173 | + |
| 174 | + # 若果样本中所有实例都是同一类,则T为单节点树,返回该类作为节点的标记 |
| 175 | + if len(clusters)==1: |
| 176 | + # y_train中所有分类都是一样的,直接返回第一个 |
| 177 | + return y_train[0] |
| 178 | + |
| 179 | + # 如果样本D中特征A为空集,则直接返回分类中最多的一类 |
| 180 | + # X_train[0]==0 就代表没有列了 |
| 181 | + if len(X_train[0])==0: |
| 182 | + return findCluster(y_train) |
| 183 | + |
| 184 | + # 找到最大的信息增益的列 |
| 185 | + feature,gain=findMaxFeature(X_train,y_train) |
| 186 | + |
| 187 | + #若信息增益小于epsilon,则T为单节点树,返回其中最大的类作为标记 |
| 188 | + if gain<epsilon: |
| 189 | + return findCluster(y_train) |
| 190 | + |
| 191 | + # 当信息增益大于epsilon,对样本依据特征划分子空间,递归构造子树 |
| 192 | + |
| 193 | + # 计算这一列有几种分类 |
| 194 | + types=set([i for i in X_train[:,feature]]) |
| 195 | + |
| 196 | + tree_dic = {feature:{}} |
| 197 | + # 使用字典描述树,如tree{123:{0:7,{1:{....}}} |
| 198 | + # 就代表123列的0特征可以分类为7,1则继续构造子树 |
| 199 | + |
| 200 | + for i in types: |
| 201 | + # 返回的是一个元组 |
| 202 | + rest_X_train,rest_y_train=cutData(X_train, y_train, feature, i) |
| 203 | + tree_dic[feature][i]=creTree(rest_X_train,rest_y_train) |
| 204 | + |
| 205 | + return tree_dic |
| 206 | + |
| 207 | +def predict(x_test,tree): |
| 208 | + |
| 209 | + |
| 210 | + |
| 211 | + while True:# 一直循环,直到在tree中找到位置 |
| 212 | + |
| 213 | + # 得到树中的分类特征,依据分类结果 |
| 214 | + # print(tree) |
| 215 | + |
| 216 | + (key, value), = tree.items() |
| 217 | + if type(value).__name__=='dict': |
| 218 | + # 如果值仍为字典,则我们需要继续遍历 |
| 219 | + # 在对测试集继续遍历的时候,我们需要删除该分类特征(key), |
| 220 | + # 因为我们在构造树的时候,删除了一些特征, |
| 221 | + # 因此我们的到的feature也是相对的 |
| 222 | + |
| 223 | + feature=x_test[key] |
| 224 | + #print(type(x_test)) |
| 225 | + #print(x_test[key]) |
| 226 | + |
| 227 | + # 注意x_test需要为list,才可以用del |
| 228 | + del x_test[key] |
| 229 | + # 向子树搜寻 |
| 230 | + # 注意是value【feature】 不是tree【feature】 |
| 231 | + tree=value[feature] |
| 232 | + # 子树为单节点,直接返回值 |
| 233 | + #print(type(tree)) # numpy.int64 |
| 234 | + #print(type(tree).__name__) # int64 |
| 235 | + if type(tree).__name__=='int64': |
| 236 | + return tree |
| 237 | + else: |
| 238 | + # 若value不是字典类型 |
| 239 | + return value |
| 240 | + |
| 241 | +def test(X_test,y_test,tree): |
| 242 | + acc_num=0 |
| 243 | + acc=0 |
| 244 | + for i in range(len(X_test)): |
| 245 | + y_pred=predict(list(X_test[i]),tree) |
| 246 | + if y_pred==y_test[i]: |
| 247 | + acc_num+=1 |
| 248 | + print(f'find {i}th data cluster:y_pred={y_pred},y={y_test[i]}') |
| 249 | + print('now_acc=', acc_num / (i + 1)) |
| 250 | + |
| 251 | + |
| 252 | +if __name__=="__main__": |
| 253 | + # 获取当前时间 |
| 254 | + start = time.time() |
| 255 | + |
| 256 | + # 读取训练文件 |
| 257 | + print("load train data") |
| 258 | + X_train, y_train = loadData('../MnistData/mnist_train.csv') |
| 259 | + |
| 260 | + # 读取测试文件 |
| 261 | + print('load test data') |
| 262 | + X_test, y_test = loadData('../MnistData/mnist_test.csv') |
| 263 | + |
| 264 | + |
| 265 | + tree=creTree(X_train,y_train) |
| 266 | + |
| 267 | + |
| 268 | + test(X_test, y_test,tree) |
| 269 | + |
| 270 | + # 获取结束时间 |
| 271 | + end = time.time() |
| 272 | + |
| 273 | + print('run time:', end - start) |
0 commit comments