|
| 1 | +from atomicwrites import atomic_write |
| 2 | +from subprocess import check_output, CalledProcessError |
| 3 | + |
| 4 | +class Utilization: |
| 5 | + def __init__(self, gpu, memory): |
| 6 | + self.gpu = float(gpu) |
| 7 | + self.memory = float(memory) |
| 8 | + if self.gpu < 2: |
| 9 | + self.gpu = 2 |
| 10 | + def set_gpu(self, gpu): |
| 11 | + self.gpu = gpu |
| 12 | + def set_mem(self, memory): |
| 13 | + self.memory = memory |
| 14 | + def set_id(self, id): |
| 15 | + self.id = id |
| 16 | + def set_cap(self, wa, wb): |
| 17 | + self.cap = wa*self.gpu + wb*self.memory |
| 18 | + |
| 19 | +output_gpu = check_output('nvidia-smi --query-gpu=utilization.gpu --format=csv', shell=True) |
| 20 | +output_gpu_split = output_gpu.split('\n') |
| 21 | +device_num = len(output_gpu_split) - 2 |
| 22 | + |
| 23 | +d_gpu = [] |
| 24 | +for i in range(device_num): |
| 25 | + d_gpu.append(filter(str.isdigit, output_gpu_split[i+1])) |
| 26 | + #print d_gpu[i] |
| 27 | + |
| 28 | +output_memory = check_output('nvidia-smi --query-gpu=memory.used --format=csv', shell=True) |
| 29 | +output_memory_split = output_memory.split('\n') |
| 30 | + |
| 31 | +d_memory = [] |
| 32 | +for i in range(device_num): |
| 33 | + d_memory.append(filter(str.isdigit, output_memory_split[i+1])) |
| 34 | + #print d_memory[i] |
| 35 | + |
| 36 | + |
| 37 | +output_memory = check_output('nvidia-smi --query-gpu=memory.total --format=csv', shell=True) |
| 38 | +output_memory_split = output_memory.split('\n') |
| 39 | + |
| 40 | +for i in range(device_num): |
| 41 | + d_memory[i] = float(d_memory[i]) / float(filter(str.isdigit, output_memory_split[i+1])) |
| 42 | + #print d_memory[i] |
| 43 | + |
| 44 | +Wa = 0.5 |
| 45 | +Wb = 0.5 |
| 46 | +device_obj=[] |
| 47 | +for i in range(device_num): |
| 48 | + device_obj.append(Utilization(d_gpu[i], d_memory[i])) |
| 49 | + device_obj[i].set_cap(Wa, Wb) |
| 50 | + device_obj[i].set_id(i) |
| 51 | + #print device_obj[i].gpu |
| 52 | + #print device_obj[i].memory |
| 53 | + #print device_obj[i].cap |
| 54 | + #print device_obj[i].id |
| 55 | + |
| 56 | +v_gpu = [] |
| 57 | +f_gpu = [] |
| 58 | +file = open('/home/coldfunction/qCUDA_0.1/qCUDA/.gpu_info', 'r') |
| 59 | +for i in range(device_num): |
| 60 | + line = file.readline() |
| 61 | + num = float(line) |
| 62 | + |
| 63 | + v_gpu.append(num) |
| 64 | + f_gpu.append(num) |
| 65 | +# if num == 0: |
| 66 | +# print(num) |
| 67 | +file.close() |
| 68 | + |
| 69 | + |
| 70 | +for i in range(device_num): |
| 71 | + if v_gpu[i] == 0: |
| 72 | + v_gpu[i] = 1.0 |
| 73 | + |
| 74 | + device_obj[i].cap = (v_gpu[i] * device_obj[i].cap) |
| 75 | + #print (device_obj[i].cap) |
| 76 | + |
| 77 | + #print(v_gpu[i]) |
| 78 | + |
| 79 | + |
| 80 | +#print |
| 81 | +device_obj.sort(key=lambda i: i.cap) |
| 82 | + |
| 83 | +id = device_obj[0].id |
| 84 | + |
| 85 | +f_gpu[id] = device_obj[0].cap |
| 86 | + |
| 87 | +with atomic_write('/home/coldfunction/qCUDA_0.1/qCUDA/.gpu_info', overwrite=True) as f: |
| 88 | + for i in range(device_num): |
| 89 | + f.write(str(f_gpu[i])) |
| 90 | + f.write('\n') |
| 91 | + |
| 92 | +print id |
| 93 | + |
| 94 | + |
| 95 | + |
| 96 | + |
| 97 | +#f = open(".select_g", 'w') |
| 98 | +#s = str(device_obj[0].id) |
| 99 | +#f.write(s) |
0 commit comments