-
Notifications
You must be signed in to change notification settings - Fork 8k
/
Copy pathnode_helpers.py
54 lines (46 loc) · 1.46 KB
/
node_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import hashlib
import torch
from comfy.cli_args import args
from PIL import ImageFile, UnidentifiedImageError
def conditioning_set_values(conditioning, values={}):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
n[1][k] = values[k]
c.append(n)
return c
def pillow(fn, arg):
prev_value = None
try:
x = fn(arg)
except (OSError, UnidentifiedImageError, ValueError): #PIL issues #4472 and #2445, also fixes ComfyUI issue #3416
prev_value = ImageFile.LOAD_TRUNCATED_IMAGES
ImageFile.LOAD_TRUNCATED_IMAGES = True
x = fn(arg)
finally:
if prev_value is not None:
ImageFile.LOAD_TRUNCATED_IMAGES = prev_value
return x
def hasher():
hashfuncs = {
"md5": hashlib.md5,
"sha1": hashlib.sha1,
"sha256": hashlib.sha256,
"sha512": hashlib.sha512
}
return hashfuncs[args.default_hashing_function]
def string_to_torch_dtype(string):
if string == "fp32":
return torch.float32
if string == "fp16":
return torch.float16
if string == "bf16":
return torch.bfloat16
def image_alpha_fix(destination, source):
if destination.shape[-1] < source.shape[-1]:
source = source[...,:destination.shape[-1]]
elif destination.shape[-1] > source.shape[-1]:
destination = torch.nn.functional.pad(destination, (0, 1))
destination[..., -1] = 1.0
return destination, source