-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload.py
126 lines (96 loc) · 3.62 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import cv2
import os
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.layers import Dropout, Flatten
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D
import cv2
from sklearn.model_selection import train_test_split
import pickle
import os
import pandas as pd
import random
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Function to load images from a directory
def load_images_from_folder(folder, target_size=(32, 32)):
images = []
labels = []
class_names = os.listdir(folder)
class_names = [class_name for class_name in class_names if class_name.isdigit()] # Keep only numeric folder names# Get subfolder names as class labels
class_names = sorted(class_names, key=lambda x: int(x))# Get subfolder names as class labels
labelSub = 0
for label, class_name in enumerate(class_names):
print(label)
print(class_name)
# os specific
if class_name == ".DS_Store":
labelSub = 1
continue
class_folder = os.path.join(folder, class_name)
for filename in os.listdir(class_folder):
img_path = os.path.join(class_folder, filename)
img = cv2.imread(img_path) # Load image
if img is None: continue
img = cv2.resize(img, target_size) # Resize
images.append(img)
labels.append(label-labelSub)
return np.array(images), np.array(labels)
# Load training images
train_images, train_labels = load_images_from_folder("Images")
print("Train Images Shape:", train_images.shape)
print("Train Labels Shape:", train_labels.shape)
import tensorflow as tf
from tensorflow.keras import layers, models
# Modell-Architektur
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Input, MaxPool2D, BatchNormalization
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
X_train, X_val, y_train, y_val = train_test_split(train_images, train_labels, test_size=0.3, random_state=42, shuffle=True)
X_train = X_train/255
X_val = X_val/255
print("X_train.shape", X_train.shape)
print("X_valid.shape", X_val.shape)
print("y_train.shape", y_train.shape)
print("y_valid.shape", y_val.shape)
print(X_train[0])
y_train = to_categorical(y_train, num_classes=43)
y_val = to_categorical(y_val, num_classes=43)
print(y_train.shape)
print(y_val.shape)
model = Sequential([
Conv2D(filters=16, kernel_size=(3,3), activation='relu', input_shape=(32,32,3)),
Conv2D(filters=32, kernel_size=(3,3), activation='relu'),
MaxPool2D(pool_size=(2, 2)),
BatchNormalization(axis=-1),
Conv2D(filters=64, kernel_size=(3,3), activation='relu'),
Conv2D(filters=128, kernel_size=(3,3), activation='relu'),
MaxPool2D(pool_size=(2, 2)),
BatchNormalization(axis=-1),
Flatten(),
Dense(512, activation='relu'),
BatchNormalization(),
Dropout(rate=0.5),
Dense(43, activation='softmax')
])
lr = 0.001
epochs = 30
opt = Adam(learning_rate=lr, decay=lr / (epochs * 0.5))
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
aug = ImageDataGenerator(
rotation_range=10,
zoom_range=0.15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.15,
horizontal_flip=False,
vertical_flip=False,
fill_mode="nearest"
)
history = model.fit(aug.flow(X_train, y_train, batch_size=32), epochs=epochs, validation_data=(X_val, y_val))
# Modell speichern
model.save('traffic_sign_model.keras')