-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre-processing.R
174 lines (150 loc) · 7.32 KB
/
pre-processing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
library(tidyverse)
library(ggrepel)
vrfiles <- dir("ocr-text", pattern = "^vrb", full.names = TRUE)
# Remember to edit the pattern to grep based on the updated, tagged OCR file.
inpfiles <- grep("(598|599|600|601|602|603|604|605|606|607|608|609|610|611|612|613)\\.txt", vrfiles, perl = TRUE, value = TRUE)
inpfiles
pages <- str_extract(inpfiles, "(?<=_)[0-9]{3}(?=\\.txt)")
# read the xml-tagged texts
# txt <- read_lines(inpfiles) |>
# str_subset("\\<(gloss|lang|term)\\b")
txt <- inpfiles |>
purrr::map(read_lines) |>
purrr::map(str_subset, "\\<(gloss|lang|term)\\b") |>
purrr::map(str_split, "\\s+(?=\\<)") |>
purrr::map(unlist)
# txt <- txt |>
# str_split("\\s+(?=\\<)") |>
# unlist()
# process the languages ====
# lang <- str_subset(txt, "\\<lang") |>
# str_extract("(?<=\\>)[^<]+?(?=\\<\\/lang\\>)") |>
# unique() |>
# (\(x) tibble(lang = x))() |>
# mutate(ID = row_number())
lang <- txt |>
purrr::map(str_subset, "\\<lang") |>
purrr::map(str_extract, "(?<=\\>)[^<]+?(?=\\<\\/lang\\>)") |>
unlist() |>
unique() |>
(\(x) tibble(lang = x))() |>
mutate(ID = row_number())
glottocode <- data.frame(Glottocode = c("._.", "._.", "._.", "Mentawai_ment1249", "Nias_nias1242", "Enggano_engg1245",
"Gorontalo_goro1259", "._.", "Manombai_mano1275", "._.",
"West Tarangan_west2538", "Kur_kurr1245", "Teor_teor1240", "._.",
"Watubela_watu1247", "Geser-Gorom_gese1240", "Uruangnirin_urua1244", "Biak_biak1248", "Mansim_mans1260",
"Hatam_hata1243", "Tobati_toba1266")) |>
mutate(ID = row_number()) |>
separate_wider_delim(Glottocode, delim = "_", names = c("Name", "Glottocode")) |>
mutate(across(where(is.character), \(x) if_else(x == ".", NA, x)))
# source for the glottocode: https://glottolog.org/resource/reference/id/112913
# get the relevant Glottocodes
# read_csv("data/glottolog-languoids-glottolog-glottolog-d9da5e2.csv") |>
# filter(Glottocode %in% glottocode$Glottocode) |>
# write_tsv("data/glottolog-data.tsv")
glottoloc <- read_tsv("data/glottolog-data.tsv") |>
select(-ID)
lang_grp <- tribble(~ID, ~Group,
1, "Sumātra",
2, "Sumātra",
3, "Inselgruppen weftlich von Sumātra",
4, "Inselgruppen weftlich von Sumātra",
5, "Inselgruppen weftlich von Sumātra",
6, "Inselgruppen weftlich von Sumātra",
7, "Selēbes",
8, "Selēbes",
9, "Aru-Inseln",
10, "Aru-Inseln",
11, "Aru-Inseln",
12, "Südofter-Inseln",
13, "Südofter-Inseln",
14, "Südofter-Inseln",
15, "Südofter-Inseln",
16, "Südofter-Inseln",
17, "Neuguinea",
18, "Neuguinea",
19, "Neuguinea",
20, "Neuguinea",
21, "Neuguinea")
lang <- lang |> left_join(lang_grp) |>
left_join(glottocode) |>
left_join(glottoloc) |>
mutate(Latitude = replace(Latitude, lang == "Banjak-Inseln",
2.316876),
Longitude = replace(Longitude, lang == "Banjak-Inseln",
97.414167),
Latitude = replace(Latitude, lang == "Singkel",
2.274181),
Longitude = replace(Longitude, lang == "Singkel",
97.859914),
Latitude = replace(Latitude, lang == "Togean-Inseln",
-0.389540),
Longitude = replace(Longitude, lang == "Togean-Inseln",
121.934014),
Latitude = replace(Latitude, lang == "Wonumbai", # it equals Sungai Manoembai (source: https://zookeys.pensoft.net/article/98097/)
-6.0251663460914235),
Longitude = replace(Longitude, lang == "Wonumbai", # it equals Sungai Manoembai (source: https://zookeys.pensoft.net/article/98097/)
134.31429096241527),
Latitude = replace(Latitude, lang == "Kei-Inseln",
-5.7497116289056835),
Longitude = replace(Longitude, lang == "Kei-Inseln",
132.7304827976811))
lang
lang_vct <- unique(lang$lang)
## create a map image for the languages
### source: https://www.r-bloggers.com/2022/10/map-any-region-in-the-world-with-r-part-i-the-basic-map/
map_data_idn <- ggplot2::map_data("world")[ggplot2::map_data("world")$region == "Indonesia", ]
map_data_idn |>
ggplot() +
geom_polygon(aes(x = long, y = lat, group = group),
fill = "pink") +
theme_light() +
coord_map() +
coord_fixed(1.3) +
ggrepel::geom_text_repel(data = filter(lang, !is.na(Latitude)),
aes(x = Longitude, y = Latitude,
label = if_else(is.na(Glottocode), str_c(lang, " (???)", sep = ""),
str_c(lang, " (", Glottocode, ")", sep = ""))),
min.segment.length = 0.1) +
labs(x = "Longitude",
y = "Latitude",
caption = "(???) means inexistent Glottocodes") +
ggtitle("Languages mentioned in the source (von Rosenberg 1878)\nCodes inside the brackets are the Glottocodes")
ggsave("img/language-map.png", dpi = 600,
width = 12, height = 8, units = "in")
# extract elements into tibble ====
names(txt) <- pages
pattern_to_extract <- "((?<=target\\=\")([^\"]+?)(?=\")|(?<=xml\\:lang\\=\")([^\"]+?)(?=\")|(?<=\\>)([^<]+)(?=\\<)|(?<=change\\=\")([^\"]+?)(?=\"\\>))"
lang_term_gloss <- txt |>
purrr::map(str_subset, "\\<gloss\\b") |>
purrr::map(str_extract_all, pattern_to_extract, simplify = TRUE) |>
purrr::map(as_tibble, .name_repair = "unique") %>%
purrr::map2(pages, ., ~mutate(.y, pp = .x)) |>
list_rbind() |>
# lang_term_gloss <- str_subset(txt, "\\<gloss\\b") |>
# str_extract_all("((?<=target\\=\")([^\"]+?)(?=\")|(?<=xml\\:lang\\=\")([^\"]+?)(?=\")|(?<=\\>)([^<]+)(?=\\<)|(?<=change\\=\")([^\"]+?)(?=\"\\>))",
# simplify = TRUE) |>
# as_tibble(.name_repair = "unique") |>
rename(lang = `...1`,
german = `...2`,
form_orig = `...3`,
form_change = `...4`) |>
left_join(select(lang, -ID)) |>
mutate(lang = factor(lang, levels = lang_vct)) |>
arrange(pp, german, lang) |>
mutate(form_change = replace_na(form_change, "")) |>
mutate(forms = if_else(form_change == "", form_orig, form_change)) |>
select(Pages = pp, Language = lang, Glottocode, LanguageGroup = Group, German = german, Forms = forms, OldFormOrig = form_orig, OldFormChange = form_change)
# handling the English translation of the German gloss
the_German <- read_lines("data/German_Gloss.txt")
the_English <- read_lines("data/English_Translation") # From DeepL translator
the_Indonesian <- read_lines("data/Indonesian_Translation") # From DeepL translator (German to Indonesian)
the_Gloss <- tibble(German = the_German, English = the_English, Indonesian = the_Indonesian)
# re-run this everytime a new page gets updated with tagging.
lang_term_gloss |>
# join the Gloss
left_join(the_Gloss) |>
relocate(English, .after = German) |>
relocate(Indonesian, .after = English) |>
# relocate(Forms, .before = German) |>
write_tsv("data/vrosenberg1878.tsv")