-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMFI.py
122 lines (96 loc) · 2.93 KB
/
MFI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
import mplfinance as mpf
def loadStocks(start, end, stock):
df = yf.download(stock, start, end, interval='1d')
return df
def findMFI(high, low, close, volume, time_window):
tp = (high + low + close)/3
rmf = tp * volume
diff = rmf.diff(1).dropna()
pmf = 0 * diff
nmf = 0 * diff
# up change
pmf[diff > 0] = diff[diff > 0]
pmf_avg = pmf.ewm(com=time_window - 1, min_periods=time_window).mean()
# down change
nmf[diff < 0] = diff[diff < 0]
nmf_avg = nmf.ewm(com=time_window - 1, min_periods=time_window).mean()
# mfi
mfr = abs(pmf_avg / nmf_avg)
mfi = 100 - 100 / (1 + mfr)
return mfi
def tradeMFI(df, high, low):
position = 0
counter = 0
percentChange = []
for i in df.index:
mfi = df['MFI']
close = df['Adj Close'][i]
# buy
if (mfi[i] < low):
if (position == 0):
position = 1 # buy position
buyP = close # buy price
# sell
elif (mfi[i] > high):
if (position == 1):
position = 0 # sell position
sellP = close # sell price
perc = (sellP / buyP - 1) * 100
percentChange.append(perc)
if (counter == df["Adj Close"].count() - 1 and position == 1):
position = 0
sellP = close
perc = (sellP / buyP - 1) * 100
percentChange.append(perc)
counter += 1
return percentChange
def calcReturn(percentChange, df):
gains = 0
numGains = 0
losses = 0
numLosses = 0
totReturn = 1
for i in percentChange:
if (i > 0):
gains += i
numGains += 1
else:
losses += i
numLosses += 1
totReturn = totReturn * ((i / 100) + 1)
totReturn = round((totReturn - 1) * 100, 2)
totTrades = numGains + numLosses
return totTrades, totReturn
def MFI(start, end, stock, low, high, plot=False):
df = loadStocks(start, end, stock)
df['MFI'] = findMFI(df['High'], df['Low'], df['Adj Close'], df['Volume'], 14)
percentChange = tradeMFI(df, high, low)
# need to change lines bc mav is moving average
if plot == True:
lowarray = [low] * len(df.index)
higharray = [high] * len(df.index)
mfi = df['MFI']
mfiarray = []
for i in df.index:
mfiarray.append(mfi[i])
fig = plt.figure(num=1, clear=True)
ax = fig.add_subplot(1, 1, 1)
ax.plot(mfiarray)
ax.plot(lowarray, 'g-')
ax.plot(higharray, 'r-')
plt.show()
return calcReturn(percentChange, df)
def main():
start = ['2010-01-01']
end = ['2020-01-01']
stocks = ['SPY', 'VGT', 'XLV']
mfi_low = 45
mfi_high = 70
results = MFI(start[0], end[0], stocks[0], mfi_low, mfi_high)
print(results)
return 0
main()