Skip to content

Commit 15a4620

Browse files
committed
MAINT: More Future and Deprecations
1 parent b5acb0c commit 15a4620

File tree

9 files changed

+44
-17
lines changed

9 files changed

+44
-17
lines changed

statsmodels/graphics/mosaicplot.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -326,7 +326,7 @@ def _normalize_dataframe(dataframe, index):
326326
#groupby the given keys, extract the same columns and count the element
327327
# then collapse them with a mean
328328
data = dataframe[index].dropna()
329-
grouped = data.groupby(index, sort=False)
329+
grouped = data.groupby(index, sort=False, observed=False)
330330
counted = grouped[index].count()
331331
averaged = counted.mean(axis=1)
332332
# Fill empty missing with 0, see GH5639

statsmodels/iolib/summary2.py

+4-1
Original file line numberDiff line numberDiff line change
@@ -595,7 +595,10 @@ def _df_to_simpletable(df, align='r', float_format="%.4f", header=True,
595595
index=True, table_dec_above='-', table_dec_below=None,
596596
header_dec_below='-', pad_col=0, pad_index=0):
597597
dat = df.copy()
598-
dat = dat.applymap(lambda x: _formatter(x, float_format))
598+
try:
599+
dat = dat.map(lambda x: _formatter(x, float_format))
600+
except AttributeError:
601+
dat = dat.applymap(lambda x: _formatter(x, float_format))
599602
if header:
600603
headers = [str(x) for x in dat.columns.tolist()]
601604
else:

statsmodels/nonparametric/kde.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -215,7 +215,7 @@ def cdf(self):
215215
a, b = kern.domain
216216

217217
def func(x, s):
218-
return kern.density(s, x)
218+
return np.squeeze(kern.density(s, x))
219219

220220
support = self.support
221221
support = np.r_[a, support]

statsmodels/robust/norms.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1059,7 +1059,7 @@ def estimate_location(a, scale, norm=None, axis=0, initial=None,
10591059
for _ in range(maxiter):
10601060
W = norm.weights((a-mu)/scale)
10611061
nmu = np.sum(W*a, axis) / np.sum(W, axis)
1062-
if np.alltrue(np.less(np.abs(mu - nmu), scale * tol)):
1062+
if np.all(np.less(np.abs(mu - nmu), scale * tol)):
10631063
return nmu
10641064
else:
10651065
mu = nmu

statsmodels/sandbox/bspline.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -482,7 +482,7 @@ def fit(self, y, x=None, weights=None, pen=0.):
482482

483483
# throw out rows with zeros (this happens at boundary points!)
484484

485-
mask = np.flatnonzero(1 - np.alltrue(np.equal(bt, 0), axis=0))
485+
mask = np.flatnonzero(1 - np.all(np.equal(bt, 0), axis=0))
486486

487487
bt = bt[:,mask]
488488
y = y[mask]

statsmodels/sandbox/distributions/extras.py

+4-1
Original file line numberDiff line numberDiff line change
@@ -817,7 +817,10 @@ def _sf(self, x, *args, **kwargs):
817817
return 1.0 - self._cdf(x, *args, **kwargs)
818818

819819
def _munp(self, n, *args, **kwargs):
820-
return self._mom0_sc(n, *args)
820+
out = np.squeeze(self._mom0_sc(n, *args))
821+
if np.isscalar(out):
822+
return float(out)
823+
return out
821824

822825

823826
# ppf might not be possible in general case?

statsmodels/sandbox/distributions/tests/test_transf.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
99
todo:
1010
change moment calculation, (currently uses default _ppf method - I think)
11-
>>> lognormalg.moment(4)
11+
# >>> lognormalg.moment(4)
1212
Warning: The algorithm does not converge. Roundoff error is detected
1313
in the extrapolation table. It is assumed that the requested tolerance
1414
cannot be achieved, and that the returned result (if full_output = 1) is

statsmodels/stats/libqsturng/qsturng_.py

+4-1
Original file line numberDiff line numberDiff line change
@@ -839,7 +839,10 @@ def opt_func(p, r, v):
839839
soln = 1. - fminbound(opt_func, .1, .999, args=(r,v))
840840
return np.atleast_1d(soln)
841841

842-
_vpsturng = np.vectorize(_psturng)
842+
def _psturng_scalar(q, r, v):
843+
return np.squeeze(_psturng(q, r, v))
844+
845+
_vpsturng = np.vectorize(_psturng_scalar)
843846
_vpsturng.__doc__ = """vector version of psturng"""
844847

845848
def psturng(q, r, v):

statsmodels/tsa/statespace/dynamic_factor_mq.py

+27-9
Original file line numberDiff line numberDiff line change
@@ -1766,8 +1766,10 @@ def summary(self, truncate_endog_names=None):
17661766
data = self.factor_block_orders.reset_index()
17671767
data['block'] = data['block'].map(
17681768
lambda factor_names: ', '.join(factor_names))
1769-
data[['order']] = (
1770-
data[['order']].applymap(str))
1769+
try:
1770+
data[['order']] = data[['order']].map(str)
1771+
except AttributeError:
1772+
data[['order']] = data[['order']].applymap(str)
17711773

17721774
params_data = data.values
17731775
params_header = data.columns.map(str).tolist()
@@ -4221,7 +4223,10 @@ def summary(self, alpha=.05, start=None, title=None, model_name=None,
42214223
data = pd.DataFrame(
42224224
self.filter_results.design[:, mod._s['factors_L1'], 0],
42234225
index=endog_names, columns=mod.factor_names)
4224-
data = data.applymap(lambda s: '%.2f' % s)
4226+
try:
4227+
data = data.map(lambda s: '%.2f' % s)
4228+
except AttributeError:
4229+
data = data.applymap(lambda s: '%.2f' % s)
42254230

42264231
# Idiosyncratic terms
42274232
# data[' '] = ' '
@@ -4231,8 +4236,12 @@ def summary(self, alpha=.05, start=None, title=None, model_name=None,
42314236
self.params[mod._p['idiosyncratic_ar1']])
42324237
k_idio += 1
42334238
data['var.'] = self.params[mod._p['idiosyncratic_var']]
4234-
data.iloc[:, -k_idio:] = data.iloc[:, -k_idio:].applymap(
4235-
lambda s: '%.2f' % s)
4239+
try:
4240+
data.iloc[:, -k_idio:] = data.iloc[:, -k_idio:].map(
4241+
lambda s: f'{s:.2f}')
4242+
except AttributeError:
4243+
data.iloc[:, -k_idio:] = data.iloc[:, -k_idio:].applymap(
4244+
lambda s: f'{s:.2f}')
42364245

42374246
data.index.name = 'Factor loadings:'
42384247

@@ -4273,7 +4282,10 @@ def summary(self, alpha=.05, start=None, title=None, model_name=None,
42734282
index=block.factor_names,
42744283
columns=lag_names)
42754284
data.index.name = ''
4276-
data = data.applymap(lambda s: '%.2f' % s)
4285+
try:
4286+
data = data.map(lambda s: '%.2f' % s)
4287+
except AttributeError:
4288+
data = data.applymap(lambda s: '%.2f' % s)
42774289

42784290
Q = self.filter_results.state_cov
42794291
# data[' '] = ''
@@ -4283,9 +4295,15 @@ def summary(self, alpha=.05, start=None, title=None, model_name=None,
42834295
data[' error covariance'] = block.factor_names
42844296
for j in range(block.k_factors):
42854297
data[block.factor_names[j]] = Q[ix1:ix2, ix1 + j]
4286-
data.iloc[:, -block.k_factors:] = (
4287-
data.iloc[:, -block.k_factors:].applymap(
4288-
lambda s: '%.2f' % s))
4298+
try:
4299+
formatted_vals = data.iloc[:, -block.k_factors:].map(
4300+
lambda s: f'{s:.2f}'
4301+
)
4302+
except AttributeError:
4303+
formatted_vals = data.iloc[:, -block.k_factors:].applymap(
4304+
lambda s: f'{s:.2f}'
4305+
)
4306+
data.iloc[:, -block.k_factors:] = formatted_vals
42894307

42904308
data = data.reset_index()
42914309

0 commit comments

Comments
 (0)