@@ -2106,57 +2106,49 @@ def test_arima_diff2():
2106
2106
2107
2107
def test_arima111_predict_exog_2127 ():
2108
2108
# regression test for issue #2127
2109
- ef = [ 0.03005 , 0.03917 , 0.02828 , 0.03644 , 0.03379 , 0.02744 ,
2110
- 0.03343 , 0.02621 , 0.0305 , 0.02455 , 0.03261 , 0.03507 ,
2111
- 0.02734 , 0.05373 , 0.02677 , 0.03443 , 0.03331 , 0.02741 ,
2112
- 0.03709 , 0.02113 , 0.03343 , 0.02011 , 0.03675 , 0.03077 ,
2113
- 0.02201 , 0.04844 , 0.05518 , 0.03765 , 0.05433 , 0.03049 ,
2114
- 0.04829 , 0.02936 , 0.04421 , 0.02457 , 0.04007 , 0.03009 ,
2115
- 0.04504 , 0.05041 , 0.03651 , 0.02719 , 0.04383 , 0.02887 ,
2116
- 0.0344 , 0.03348 , 0.02364 , 0.03496 , 0.02549 , 0.03284 ,
2117
- 0.03523 , 0.02579 , 0.0308 , 0.01784 , 0.03237 , 0.02078 ,
2118
- 0.03508 , 0.03062 , 0.02006 , 0.02341 , 0.02223 , 0.03145 ,
2119
- 0.03081 , 0.0252 , 0.02683 , 0.0172 , 0.02225 , 0.01579 ,
2120
- 0.02237 , 0.02295 , 0.0183 , 0.02356 , 0.02051 , 0.02932 ,
2121
- 0.03025 , 0.0239 , 0.02635 , 0.01863 , 0.02994 , 0.01762 ,
2122
- 0.02837 , 0.02421 , 0.01951 , 0.02149 , 0.02079 , 0.02528 ,
2123
- 0.02575 , 0.01634 , 0.02563 , 0.01719 , 0.02915 , 0.01724 ,
2124
- 0.02804 , 0.0275 , 0.02099 , 0.02522 , 0.02422 , 0.03254 ,
2125
- 0.02095 , 0.03241 , 0.01867 , 0.03998 , 0.02212 , 0.03034 ,
2126
- 0.03419 , 0.01866 , 0.02623 , 0.02052 ]
2127
- ue = [ 4.9 , 5. , 5. , 5. , 4.9 , 4.7 , 4.8 , 4.7 , 4.7 ,
2128
- 4.6 , 4.6 , 4.7 , 4.7 , 4.5 , 4.4 , 4.5 , 4.4 , 4.6 ,
2129
- 4.5 , 4.4 , 4.5 , 4.4 , 4.6 , 4.7 , 4.6 , 4.7 , 4.7 ,
2130
- 4.7 , 5. , 5. , 4.9 , 5.1 , 5. , 5.4 , 5.6 , 5.8 ,
2131
- 6.1 , 6.1 , 6.5 , 6.8 , 7.3 , 7.8 , 8.3 , 8.7 , 9. ,
2132
- 9.4 , 9.5 , 9.5 , 9.6 , 9.8 , 10. , 9.9 , 9.9 , 9.7 ,
2133
- 9.8 , 9.9 , 9.9 , 9.6 , 9.4 , 9.5 , 9.5 , 9.5 , 9.5 ,
2134
- 9.8 , 9.4 , 9.1 , 9. , 9. , 9.1 , 9. , 9.1 , 9. ,
2135
- 9. , 9. , 8.8 , 8.6 , 8.5 , 8.2 , 8.3 , 8.2 , 8.2 ,
2136
- 8.2 , 8.2 , 8.2 , 8.1 , 7.8 , 7.8 , 7.8 , 7.9 , 7.9 ,
2137
- 7.7 , 7.5 , 7.5 , 7.5 , 7.5 , 7.3 , 7.2 , 7.2 , 7.2 ,
2138
- 7. , 6.7 , 6.6 , 6.7 , 6.7 , 6.3 , 6.3 ]
2139
-
2140
- # rescaling results in convergence failure
2141
- #model = sm.tsa.ARIMA(np.array(ef)*100, (1,1,1), exog=ue)
2142
- model = ARIMA (ef , (1 ,1 ,1 ), exog = ue )
2109
+ ef = [0.03005 , 0.03917 , 0.02828 , 0.03644 , 0.03379 , 0.02744 ,
2110
+ 0.03343 , 0.02621 , 0.03050 , 0.02455 , 0.03261 , 0.03507 ,
2111
+ 0.02734 , 0.05373 , 0.02677 , 0.03443 , 0.03331 , 0.02741 ,
2112
+ 0.03709 , 0.02113 , 0.03343 , 0.02011 , 0.03675 , 0.03077 ,
2113
+ 0.02201 , 0.04844 , 0.05518 , 0.03765 , 0.05433 , 0.03049 ,
2114
+ 0.04829 , 0.02936 , 0.04421 , 0.02457 , 0.04007 , 0.03009 ,
2115
+ 0.04504 , 0.05041 , 0.03651 , 0.02719 , 0.04383 , 0.02887 ,
2116
+ 0.03440 , 0.03348 , 0.02364 , 0.03496 , 0.02549 , 0.03284 ,
2117
+ 0.03523 , 0.02579 , 0.03080 , 0.01784 , 0.03237 , 0.02078 ,
2118
+ 0.03508 , 0.03062 , 0.02006 , 0.02341 , 0.02223 , 0.03145 ,
2119
+ 0.03081 , 0.02520 , 0.02683 , 0.01720 , 0.02225 , 0.01579 ,
2120
+ 0.02237 , 0.02295 , 0.01830 , 0.02356 , 0.02051 , 0.02932 ,
2121
+ 0.03025 , 0.02390 , 0.02635 , 0.01863 , 0.02994 , 0.01762 ,
2122
+ 0.02837 , 0.02421 , 0.01951 , 0.02149 , 0.02079 , 0.02528 ,
2123
+ 0.02575 , 0.01634 , 0.02563 , 0.01719 , 0.02915 , 0.01724 ,
2124
+ 0.02804 , 0.02750 , 0.02099 , 0.02522 , 0.02422 , 0.03254 ,
2125
+ 0.02095 , 0.03241 , 0.01867 , 0.03998 , 0.02212 , 0.03034 ,
2126
+ 0.03419 , 0.01866 , 0.02623 , 0.02052 ]
2127
+ ue = [4.9 , 5.0 , 5.0 , 5.0 , 4.9 , 4.7 , 4.8 , 4.7 , 4.7 ,
2128
+ 4.6 , 4.6 , 4.7 , 4.7 , 4.5 , 4.4 , 4.5 , 4.4 , 4.6 ,
2129
+ 4.5 , 4.4 , 4.5 , 4.4 , 4.6 , 4.7 , 4.6 , 4.7 , 4.7 ,
2130
+ 4.7 , 5.0 , 5.0 , 4.9 , 5.1 , 5.0 , 5.4 , 5.6 , 5.8 ,
2131
+ 6.1 , 6.1 , 6.5 , 6.8 , 7.3 , 7.8 , 8.3 , 8.7 , 9.0 ,
2132
+ 9.4 , 9.5 , 9.5 , 9.6 , 9.8 , 10. , 9.9 , 9.9 , 9.7 ,
2133
+ 9.8 , 9.9 , 9.9 , 9.6 , 9.4 , 9.5 , 9.5 , 9.5 , 9.5 ,
2134
+ 9.8 , 9.4 , 9.1 , 9.0 , 9.0 , 9.1 , 9.0 , 9.1 , 9.0 ,
2135
+ 9.0 , 9.0 , 8.8 , 8.6 , 8.5 , 8.2 , 8.3 , 8.2 , 8.2 ,
2136
+ 8.2 , 8.2 , 8.2 , 8.1 , 7.8 , 7.8 , 7.8 , 7.9 , 7.9 ,
2137
+ 7.7 , 7.5 , 7.5 , 7.5 , 7.5 , 7.3 , 7.2 , 7.2 , 7.2 ,
2138
+ 7.0 , 6.7 , 6.6 , 6.7 , 6.7 , 6.3 , 6.3 ]
2139
+
2140
+ ue = np .array (ue ) / 100
2141
+ model = ARIMA (ef , (1 , 1 , 1 ), exog = ue )
2143
2142
res = model .fit (transparams = False , pgtol = 1e-8 , iprint = 0 , disp = 0 )
2144
- assert_equal (res .mle_retvals ['warnflag' ], 0 )
2145
- predicts = res .predict (start = len (ef ), end = len (ef )+ 10 ,
2146
- exog = ue [- 11 :], typ = 'levels' )
2143
+ assert_equal (res .mle_retvals ['warnflag' ], 0 )
2144
+ predicts = res .predict (start = len (ef ), end = len (ef ) + 10 ,
2145
+ exog = ue [- 11 :], typ = 'levels' )
2147
2146
2148
2147
# regression test, not verified numbers
2149
- # if exog=ue in predict, which values are used ?
2150
- predicts_res = np .array (
2151
- [ 0.02612291 , 0.02361929 , 0.024966 , 0.02448193 , 0.0248772 ,
2152
- 0.0248762 , 0.02506319 , 0.02516542 , 0.02531214 , 0.02544654 ,
2153
- 0.02559099 , 0.02550931 ])
2154
-
2155
- # if exog=ue[-11:] in predict
2156
- predicts_res = np .array (
2157
- [ 0.02591112 , 0.02321336 , 0.02436593 , 0.02368773 , 0.02389767 ,
2158
- 0.02372018 , 0.02374833 , 0.02367407 , 0.0236443 , 0.02362868 ,
2159
- 0.02362312 ])
2148
+ predicts_res = np .array ([
2149
+ 0.02591095 , 0.02321325 , 0.02436579 , 0.02368759 , 0.02389753 ,
2150
+ 0.02372 , 0.0237481 , 0.0236738 , 0.023644 , 0.0236283 ,
2151
+ 0.02362267 ])
2160
2152
2161
2153
assert_allclose (predicts , predicts_res , atol = 5e-6 )
2162
2154
0 commit comments