Skip to content

Commit f7ebbe2

Browse files
committed
STY: Correct flake8 issues
1 parent fb2bbc1 commit f7ebbe2

28 files changed

+77
-75
lines changed

INSTALL.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ numpy >= 1.18
1010
www.numpy.org
1111

1212
scipy >= 1.4
13-
13+
1414
www.scipy.org
1515

1616
pandas >= 1.0
@@ -85,7 +85,7 @@ On Ubuntu you can get dependencies through:
8585
python -m pip install cython pandas
8686

8787
Alternatively, you can install from the NeuroDebian repository:
88-
88+
8989
http://neuro.debian.net
9090

9191

statsmodels/datasets/star98/r_glm.s

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ m1 <- glm(cbind(PR50M,MATHTOT-PR50M) ~ LOWINC + PERASIAN + PERBLACK + PERHISP +
2121
#as.numeric(m1$coef)
2222
#as.numeric(sqrt(diag(vcov(m1))))
2323
results <- summary.glm(m1)
24-
24+
2525
#star.logit.fit3 <- glm(cbind(PR50M,MATHTOT-PR50M) ~ LOWINC + PERASIAN + PERBLACK + PERHISP +
2626
# PERMINTE + AVYRSEXP + AVSAL + PERSPEN + PTRATIO + PCTAF + PCTCHRT + PCTYRRND +
2727
# PERMINTE.AVYRSEXP + PERMINTE.AVSAL + AVYRSEXP.AVSAL + PERSPEN.PTRATIO + PERSPEN.PCTAF +

statsmodels/tsa/ar_model.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ class AutoReg(tsa_model.TimeSeriesModel):
164164
-----
165165
See the notebook `Autoregressions
166166
<../examples/notebooks/generated/autoregressions.html>`__ for an overview.
167-
167+
168168
Examples
169169
--------
170170
>>> import statsmodels.api as sm

statsmodels/tsa/filters/bk_filter.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ def bkfilter(x, low=6, high=32, K=12):
5555
5656
See the notebook `Time Series Filters
5757
<../examples/notebooks/generated/tsa_filters.html>`__ for an overview.
58-
58+
5959
References
6060
----------
6161
Baxter, M. and R. G. King. "Measuring Business Cycles: Approximate

statsmodels/tsa/filters/cf_filter.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ def cffilter(x, low=6, high=32, drift=True):
5555
-----
5656
See the notebook `Time Series Filters
5757
<../examples/notebooks/generated/tsa_filters.html>`__ for an overview.
58-
58+
5959
Examples
6060
--------
6161
>>> import statsmodels.api as sm

statsmodels/tsa/filters/hp_filter.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ def hpfilter(x, lamb=1600):
5858
5959
See the notebook `Time Series Filters
6060
<../examples/notebooks/generated/tsa_filters.html>`__ for an overview.
61-
61+
6262
References
6363
----------
6464
Hodrick, R.J, and E. C. Prescott. 1980. "Postwar U.S. Business Cycles: An

statsmodels/tsa/forecasting/stl.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -118,8 +118,9 @@ class STLForecast:
118118
both in- and out-of-sample predictions.
119119
120120
See the notebook `Seasonal Decomposition
121-
<../examples/notebooks/generated/stl_decomposition.html>`__ for an overview.
122-
121+
<../examples/notebooks/generated/stl_decomposition.html>`__ for an
122+
overview.
123+
123124
Examples
124125
--------
125126
>>> import numpy as np

statsmodels/tsa/holtwinters/_exponential_smoothers.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -238,7 +238,7 @@ cdef object holt_win_init(double[::1] x, HoltWintersArgs hw_args):
238238
cdef Py_ssize_t i, n, idx = 0
239239
cdef double[::1] p, s
240240
cdef long[::1] xi
241-
241+
242242
p = hw_args._p
243243
xi = hw_args._xi
244244
n = p.shape[0]

statsmodels/tsa/holtwinters/model.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -197,7 +197,7 @@ class ExponentialSmoothing(TimeSeriesModel):
197197
See the notebook `Exponential Smoothing
198198
<../examples/notebooks/generated/exponential_smoothing.html>`__
199199
for an overview.
200-
200+
201201
References
202202
----------
203203
.. [1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
@@ -1532,7 +1532,7 @@ class SimpleExpSmoothing(ExponentialSmoothing):
15321532
See the notebook `Exponential Smoothing
15331533
<../examples/notebooks/generated/exponential_smoothing.html>`__
15341534
for an overview.
1535-
1535+
15361536
References
15371537
----------
15381538
.. [1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles
@@ -1686,7 +1686,7 @@ class Holt(ExponentialSmoothing):
16861686
See the notebook `Exponential Smoothing
16871687
<../examples/notebooks/generated/exponential_smoothing.html>`__
16881688
for an overview.
1689-
1689+
16901690
References
16911691
----------
16921692
.. [1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles

statsmodels/tsa/innovations/_arma_innovations.pyx.in

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ cdef {{prefix}}toeplitz(int n, int offset0, int offset1,
5151
{{cython_type}} [:, :] out_matrix):
5252
"""
5353
toeplitz(int n, int o0, int o1, {{cython_type}} [:] in_column, {{cython_type}} [:, :] out_matrix
54-
54+
5555
Construct a Toeplitz block in a matrix in place
5656

5757
Parameters
@@ -93,7 +93,7 @@ cpdef {{prefix}}arma_transformed_acovf_fast({{cython_type}} [:] ar,
9393
{{cython_type}} [:] arma_acovf):
9494
"""
9595
arma_transformed_acovf_fast({{cython_type}} [:] ar, {{cython_type}} [:] ma, {{cython_type}} [:] arma_acovf)
96-
96+
9797
Quickly construct the autocovariance matrix for a transformed process.
9898

9999
Using the autocovariance function for an ARMA process, constructs the
@@ -201,7 +201,7 @@ cpdef {{prefix}}arma_innovations_algo_fast(int nobs,
201201
{{cython_type}} [:] acovf2):
202202
"""
203203
arma_innovations_algo_fast(int nobs, {{cython_type}} [:] ar_params, {{cython_type}} [:] ma_params, {{cython_type}} [:, :] acovf, {{cython_type}} [:] acovf2)
204-
204+
205205
Quickly apply innovations algorithm for an ARMA process.
206206

207207
Parameters
@@ -304,7 +304,7 @@ cpdef {{prefix}}arma_innovations_filter({{cython_type}} [:] endog,
304304
{{cython_type}} [:, :] theta):
305305
"""
306306
arma_innovations_filter({{cython_type}} [:] endog, {{cython_type}} [:] ar_params, {{cython_type}} [:] ma_params, {{cython_type}} [:, :] theta):
307-
307+
308308
Innovations filter for an ARMA process.
309309

310310
Parameters
@@ -375,7 +375,7 @@ cpdef {{prefix}}arma_innovations({{cython_type}} [:] endog,
375375
{{cython_type}} sigma2):
376376
"""
377377
arma_innovations({{cython_type}} [:] endog, {{cython_type}} [:] ar_params, {{cython_type}} [:] ma_params):
378-
378+
379379
Compute innovations and variances based on an ARMA process.
380380

381381
Parameters

0 commit comments

Comments
 (0)