-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis-initial4weeks.R
203 lines (176 loc) · 6.24 KB
/
analysis-initial4weeks.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
library(reshape2)
library(lmerTest)
library(survival)
library(ggplot2)
library(dplyr)
library(survminer)
library(sjPlot)
library(EValue)
library(tableone)
library(perm)
library(rms)
setwd("~/Developer/canbind-depression-anxiety-coupling")
set.seed(235)
################################################################################
# LOAD DATA
################################################################################
# Load the clinical data, convert date formats, and calculate time to event
load_clinical_data <- function() {
data <- read.csv("data/clinical_data.csv", na.strings=c(""))
data$eventtime <- data$ADY
data$baselinedate <- as.Date(data$STARTDT)
data$relapseenddate <- as.Date(data$ADT)
data$relapseenddate - data$baselinedate
data <- data %>% distinct(USUBJID, .keep_all = TRUE)
# Merge the eating, anxiety and substance use disorders
data$eating_disorder <- apply(
data[,c("anorexia", "bulimia", "binge_eating")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
data$anxiety_disorder <- apply(data[,c(
"panic_disorder_curr", "agoraphobia",
"social_phobia", "ocd", "ptsd", "gad")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
data$substance_use <- apply(
data[,c("drug", "etoh")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
# Order the income levels
data$INCMLVL <- factor(
data$INCMLVL,
levels=c(
"LESS THAN $10, 000",
"$10, 000 - $24, 999",
"$25, 000 - $49, 999",
"$50, 000 - $74, 999",
"$75, 000 - $99, 999",
"$100,000 - $149,999",
"$150,000 - $199,999",
"$200, 000 OR MORE",
"PREFER NOT TO ANSWER",
"DON'T KNOW"
))
# Order the work levels
data$EMPSTAT <- factor(
data$EMPSTAT,
level = c(
"RETIRED",
"WORKING NOW",
"SELF-EMPLOYED",
"STUDENT",
"KEEPING HOUSE",
"CASUAL WORK",
"WORKING PART-TIME DUE TO DISABILITY",
"ONLY TEMPORARILY LAID OFF, SICK LEAVE, OR MATERNITY LEAVE",
"LOOKING FOR WORK, UNEMPLOYED",
"NOT WORKING, NOT LOOKING FOR WORK",
"DISABLED, PERMANENTLY OR TEMPORARILY"
)
)
# Order the education levels
data$EDULEVEL <- factor(
data$EDULEVEL,
level = c(
"10TH GRADE",
"11TH GRADE",
"HIGH SCHOOL GRADUATE",
"SOME COLLEGE, NO DEGREE",
"ASSOCIATE DEGREE: OCCUPATIONAL, TECHNICAL, OR VOCATIONAL PROGRAM",
"ASSOCIATE DEGREE: ACADEMIC PROGRAM",
"BACHELOR'S DEGREE (E.G., BA, AB, BS, BBA)",
"MASTER'S DEGREE (E.G., MA, MS, MENG, MED,MBA)",
"PROFESSIONAL SCHOOL DEGREE (E.G., MD, DDS, DVM, JD)"
)
)
# Order job classes
data$JOBCLAS <- factor(
data$JOBCLAS,
level=c(
"SERVICE WORKER",
"LABORER/HELPER",
"CRAFT WORKER",
"TECHNICIAN",
"PROFESSIONAL",
"SALES WORKER",
"ADMINISTRATIVE SUPPORT WORKER",
"OPERATIVE",
"OFFICIAL/MANAGER",
"NONE",
"UNKNOWN"
))
return(data)
}
data <- load_clinical_data()
# Load the qids and GAD7 data
qids <- merge(
read.csv("data/qids.csv"),
read.csv("data/gad7.csv"),
by=c("USUBJID", "QSDTC")
)
qids$timestamp <- as.Date(qids$QSDTC)
# Compute total qids score
qids$QIDS <- pmax(qids$QIDS0201, qids$QIDS0202, qids$QIDS0203, qids$QIDS0204) +
qids$QIDS0205 + pmax(qids$QIDS0206, qids$QIDS0207, qids$QIDS0208, qids$QIDS0209) +
qids$QIDS0210 + qids$QIDS0211 + qids$QIDS0212 + qids$QIDS0213 + qids$QIDS0214 +
pmax(qids$QIDS0215, qids$QIDS0216)
qids$GAD7 <- qids$GAD0101 + qids$GAD0102 + qids$GAD0103 +
qids$GAD0104 + qids$GAD0105 + qids$GAD0106 + qids$GAD0107
# Filter out qids/gad7 data that are not between baseline or relapse
# and calculate mean gad7 level
qids$include = 0
data$gad7mean = NA
data$qidsmean = NA
for (s in unique(data$USUBJID)) {
start_date <- data[data$USUBJID == s, "baselinedate"]
end_date <- data[data$USUBJID == s, "baselinedate"] + 30
qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"include"] <- 1
data[data$USUBJID == s, "gad7mean"] <- mean(qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"GAD7"], na.rm = TRUE)
data[data$USUBJID == s, "qidsmean"] <- mean(qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"QIDS"], na.rm = TRUE)
}
# Identify excluded subjects
excluded_subjects <- filter(aggregate(include ~ USUBJID, qids, FUN=sum), include == 0)
excluded_subjects_table <- merge(excluded_subjects, data, by="USUBJID")
# Filter the subjects from dataset
qids <- filter(qids, !(USUBJID %in% excluded_subjects$USUBJID))
qids <- filter(qids, !is.na(QIDS))
data <- filter(data, !(USUBJID %in% excluded_subjects$USUBJID))
################################################################################
# ESTIMATE THE DEPRESSION-ANXIETY COUPLING
################################################################################
set.seed(27243)
# Fit model to estimate effect of GAD7 on QIDS
m <- lmer(QIDS ~ GAD7 + (1 + GAD7|USUBJID), data=qids,
control=lmerControl(calc.derivs=FALSE, optCtrl = list(maxfun=100000)))
# Extract random effects
rand_eff <- dcast(as.data.frame(ranef(m)), grp ~ term, value.var="condval")
names(rand_eff) <- c("USUBJID", "Intercept", "GAD7")
# Merge random effects with relapse data
data <- merge(data, rand_eff, by="USUBJID")
################################################################################
# RUN THE COX PROPORTIONAL HAZARDS MODEL
################################################################################
# Fit Cox model
cm = coxph(Surv(eventtime, relapse) ~
scale(GAD7) +
scale(gad7bl) +
scale(madrsbl) +
scale(gad7mean) +
scale(qidsmean), data = data)
summary(cm)
tab_model(cm, file="tables/coxmodel-initial4weeks.doc")
vif(cm)
cm_unscaled = coxph(Surv(eventtime, relapse) ~
GAD7 +
gad7bl +
madrsbl +
gad7mean +
qidsmean, data = data)
summary(cm_unscaled)
tab_model(cm, cm_unscaled, file="tables/coxmodel-initial4weeks.doc")