-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis-relapseredef.R
370 lines (327 loc) · 10.5 KB
/
analysis-relapseredef.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
library(reshape2)
library(lmerTest)
library(survival)
library(ggplot2)
library(dplyr)
library(survminer)
library(sjPlot)
library(EValue)
library(tableone)
library(perm)
library(rms)
setwd("~/Developer/canbind-depression-anxiety-coupling")
set.seed(235)
################################################################################
# LOAD DATA
################################################################################
# Load the clinical data, convert date formats, and calculate time to event
load_clinical_data <- function() {
data <- read.csv("data/clinical_data.csv", na.strings=c(""))
data$eventtime <- data$ADY
data$baselinedate <- as.Date(data$STARTDT)
data$relapseenddate <- as.Date(data$ADT)
data$relapseenddate - data$baselinedate
data <- data %>% distinct(USUBJID, .keep_all = TRUE)
# Merge the eating, anxiety and substance use disorders
data$eating_disorder <- apply(
data[,c("anorexia", "bulimia", "binge_eating")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
data$anxiety_disorder <- apply(data[,c(
"panic_disorder_curr", "agoraphobia",
"social_phobia", "ocd", "ptsd", "gad")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
data$substance_use <- apply(
data[,c("drug", "etoh")],
MARGIN = 1,
FUN = function (x) { any(x == "Yes", na.rm=TRUE) })
# Order the income levels
data$INCMLVL <- factor(
data$INCMLVL,
levels=c(
"LESS THAN $10, 000",
"$10, 000 - $24, 999",
"$25, 000 - $49, 999",
"$50, 000 - $74, 999",
"$75, 000 - $99, 999",
"$100,000 - $149,999",
"$150,000 - $199,999",
"$200, 000 OR MORE",
"PREFER NOT TO ANSWER",
"DON'T KNOW"
))
# Order the work levels
data$EMPSTAT <- factor(
data$EMPSTAT,
level = c(
"RETIRED",
"WORKING NOW",
"SELF-EMPLOYED",
"STUDENT",
"KEEPING HOUSE",
"CASUAL WORK",
"WORKING PART-TIME DUE TO DISABILITY",
"ONLY TEMPORARILY LAID OFF, SICK LEAVE, OR MATERNITY LEAVE",
"LOOKING FOR WORK, UNEMPLOYED",
"NOT WORKING, NOT LOOKING FOR WORK",
"DISABLED, PERMANENTLY OR TEMPORARILY"
)
)
# Order the education levels
data$EDULEVEL <- factor(
data$EDULEVEL,
level = c(
"10TH GRADE",
"11TH GRADE",
"HIGH SCHOOL GRADUATE",
"SOME COLLEGE, NO DEGREE",
"ASSOCIATE DEGREE: OCCUPATIONAL, TECHNICAL, OR VOCATIONAL PROGRAM",
"ASSOCIATE DEGREE: ACADEMIC PROGRAM",
"BACHELOR'S DEGREE (E.G., BA, AB, BS, BBA)",
"MASTER'S DEGREE (E.G., MA, MS, MENG, MED,MBA)",
"PROFESSIONAL SCHOOL DEGREE (E.G., MD, DDS, DVM, JD)"
)
)
# Order job classes
data$JOBCLAS <- factor(
data$JOBCLAS,
level=c(
"SERVICE WORKER",
"LABORER/HELPER",
"CRAFT WORKER",
"TECHNICIAN",
"PROFESSIONAL",
"SALES WORKER",
"ADMINISTRATIVE SUPPORT WORKER",
"OPERATIVE",
"OFFICIAL/MANAGER",
"NONE",
"UNKNOWN"
))
return(data)
}
data <- load_clinical_data()
# Load the qids and GAD7 data
qids <- merge(
read.csv("data/qids.csv"),
read.csv("data/gad7.csv"),
by=c("USUBJID", "QSDTC")
)
qids$timestamp <- as.Date(qids$QSDTC)
# Reclassify the relapsers who had unstable course
ambig <- filter(
data,
subject_id %in% c(
#"CBN_00001_017",
"CBN_00004_010",
#"CBN_00002_011",
"CBN_00003_015",
"CBN_00004_029",
"CBN_00003_020",
"CBN_00002_014",
"CBN_00001_013",
"CBN_00001_016"
)
)[,c("subject_id", "USUBJID")]
data$relapse[data$subject_id %in% ambig$subject_id] <- 1
# Compute total qids score
qids$QIDS <- pmax(qids$QIDS0201, qids$QIDS0202, qids$QIDS0203, qids$QIDS0204) +
qids$QIDS0205 + pmax(qids$QIDS0206, qids$QIDS0207, qids$QIDS0208, qids$QIDS0209) +
qids$QIDS0210 + qids$QIDS0211 + qids$QIDS0212 + qids$QIDS0213 + qids$QIDS0214 +
pmax(qids$QIDS0215, qids$QIDS0216)
qids$GAD7 <- qids$GAD0101 + qids$GAD0102 + qids$GAD0103 +
qids$GAD0104 + qids$GAD0105 + qids$GAD0106 + qids$GAD0107
# Filter out qids/gad7 data that are not between baseline or relapse
# and calculate mean gad7 level
qids$include = 0
data$gad7mean = NA
data$qidsmean = NA
for (s in unique(data$USUBJID)) {
start_date <- data[data$USUBJID == s, "baselinedate"]
end_date <- data[data$USUBJID == s, "relapseenddate"] - 30
qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"include"] <- 1
data[data$USUBJID == s, "gad7mean"] <- mean(qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"GAD7"], na.rm = TRUE)
data[data$USUBJID == s, "qidsmean"] <- mean(qids[
(qids$USUBJID == s) & (qids$timestamp >= start_date) & (qids$timestamp < end_date),
"QIDS"], na.rm = TRUE)
}
# Identify excluded subjects
excluded_subjects <- filter(aggregate(include ~ USUBJID, qids, FUN=sum), include == 0)
excluded_subjects_table <- merge(excluded_subjects, data, by="USUBJID")
# Filter the subjects from dataset
qids <- filter(qids, !(USUBJID %in% excluded_subjects$USUBJID))
qids <- filter(qids, !is.na(QIDS))
data <- filter(data, !(USUBJID %in% excluded_subjects$USUBJID))
################################################################################
# CREATE TABLE ONE
################################################################################
# Print mean event time
mean(data$eventtime)
# Identify table 1 variables
t1vars <- c(
"SITEID",
"AGE",
"SEX",
"HANDDOM",
"ETHNIC",
"EDULEVEL",
"EMPSTAT",
"INCMLVL",
"JOBCLAS",
"MARISTAT",
"age_of_onset",
"mde_num",
"currmdedur",
"lifetime_psychotic",
"personality_disorder",
"eating_disorder",
"anxiety_disorder",
"substance_use",
"famhx",
"n_meds",
"madrsbl",
"qidsbl",
"gad7bl",
"cgibl",
"sdsbl",
"leapsbl",
"qlesqbl",
"brianbl",
"relapse"
)
# Create Table 1
t1df <- data[,t1vars]
set.seed(236)
t1 = CreateTableOne(
data=t1df,
strata=c("relapse"),
testApprox=chisq.test,
testExact=chisq.test,
argsApprox=list(simulate.p.value=TRUE),
argsExact=list(simulate.p.value=TRUE),
includeNA=FALSE,
testNormal=permTS,
testNonNormal=permTS,
factorVars = c(
"SITEID",
"SEX",
"HANDDOM",
"ETHNIC",
"EDULEVEL",
"EMPSTAT",
"INCMLVL",
"JOBCLAS",
"MARISTAT",
"lifetime_psychotic",
"personality_disorder",
"eating_disorder",
"anxiety_disorder",
"substance_use",
"famhx"
))
t1mat = print(t1, minMax=FALSE, printToggle=FALSE)
write.csv(t1mat, "tables/table1-relapseredef.csv")
################################################################################
# ESTIMATE THE DEPRESSION-ANXIETY COUPLING
################################################################################
set.seed(27243)
# Fit model to estimate effect of GAD7 on QIDS
m <- lmer(QIDS ~ GAD7 + (1 + GAD7|USUBJID), data=qids,
control=lmerControl(calc.derivs=FALSE, optCtrl = list(maxfun=100000)))
tab_model(m, file="tables/lmm-table-relapseredef.doc")
# Plot individual-level random slopes
set_theme(base = theme_bw())
pdf("figures/DACSre-relapseredef.pdf", height=3, width=3)
p = plot_model(m, type="pred", pred.type="re",
terms=c("GAD7", "USUBJID"), ci.lvl=FALSE, line.size=0.1,
dot.size=0.5, axis.lim = list(c(0, 21), c(0, 27)),
show.data=TRUE, show.legend=FALSE, colors="black",
title="Patient-Level DACS")
p + theme(
axis.title.x=element_text(colour="black"),
axis.text.x=element_text(colour="black"),
axis.title.y=element_text(colour="black"),
axis.text.y=element_text(colour="black"))
dev.off()
# Extract random effects
rand_eff <- dcast(as.data.frame(ranef(m)), grp ~ term, value.var="condval")
names(rand_eff) <- c("USUBJID", "Intercept", "GAD7")
write.csv(rand_eff, "results/dacs-random-effects-relapseredef.csv")
# Merge random effects with relapse data
data <- merge(data, rand_eff, by="USUBJID")
# Plot overall survival curve
sfit0 <- survfit(Surv(eventtime, relapse) ~ 1, data = data)
pdf("figures/survival-all-relapseredef.pdf", width=6, height=6)
#ggsurvplot(
# sfit0,
# data=data,
# conf.int = TRUE, xlab="Time (Days)", theme=theme_bw(),
# palette="aaas")
p = plot(sfit0, conf.int=TRUE,
xlab="Days", ylab="Proportion Free of Relapse",
lwd=2, col="black", mark.time=TRUE,
cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5
)
print(p)
dev.off()
# Create survival curves for DACS Groups
data$DACS <- cut(data$GAD7, quantile(data$GAD7), labels=c("Low", "Low", "Low", "High"))
sfit <- survfit(Surv(eventtime, relapse) ~ DACS, data = data)
pdf("figures/survival-dacs-relapseredef.pdf", width=6, height=6)
p = plot(sfit, conf.int=TRUE,
xlab="Days", ylab="Proportion Free of Relapse",
lwd=2, col=c("gray", "black"), mark.time=TRUE,
cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5
)
legend(1, 0.1, legend=c("Top 25% of Coupling Strength", "Bottom 75% of Coupling Strength"),
col=c("black","gray"), lty=1, cex=0.8)
print(p)
dev.off()
################################################################################
# RUN THE COX PROPORTIONAL HAZARDS MODEL
################################################################################
# Fit Cox model
cm = coxph(Surv(eventtime, relapse) ~
scale(GAD7) +
scale(gad7bl) +
scale(madrsbl) +
scale(gad7mean) +
scale(qidsmean), data = data)
summary(cm)
tab_model(cm, file="tables/coxmodel-relapseredef.doc")
vif(cm)
cm_unscaled = coxph(Surv(eventtime, relapse) ~
GAD7 +
gad7bl +
madrsbl +
gad7mean +
qidsmean, data = data)
summary(cm_unscaled)
tab_model(cm, cm_unscaled, file="tables/coxmodel-relapseredef.doc")
# Cox model swapping the qids mean for intercept
cm2 = coxph(Surv(eventtime, relapse) ~
scale(GAD7) +
scale(gad7bl) +
scale(madrsbl) +
scale(gad7mean) +
scale(Intercept), data = data)
summary(cm2)
tab_model(cm, cm2, file="tables/coxmodel-intercept-relapseredef.doc")
# Examine Schoenfeld residuals
cm_z = cox.zph(cm)
pdf("figures/schoenfeld-relapseredef.pdf", height=10, width=10)
p = ggcoxzph(cm_z)
print(p)
dev.off()
# Compute E-Value
eval = evalue(HR(exp(cm$coefficients)[1], rare=FALSE),
lo = exp(confint(cm))[1,1],
hi = exp(confint(cm))[1,2], true = 1)
eval
point_eval = eval[2,1]
ci_eval = eval[2,2]