-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtorchtest.py
169 lines (137 loc) · 4.96 KB
/
torchtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import datetime
import glob
import math
import os
import shutil
import sqlite3
import string
import subprocess
import sys
import time
import random
import typing
import csv
import numpy as np
import pickle
import itertools
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data.dataloader import default_collate
from sys import platform
from pathlib import Path
dtype = torch.float
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Data(Dataset):
def __init__(self, X_train, y_train):
# need to convert float64 to float32 else
# will get the following error
# RuntimeError: expected scalar type Double but found Float
self.X = torch.from_numpy(X_train.astype(np.float32))
# need to convert float64 to Long else
# will get the following error
# RuntimeError: expected scalar type Long but found Float
self.y = torch.from_numpy(y_train).type(torch.LongTensor)
self.len = self.X.shape[0]
def __getitem__(self, index):
return self.X[index], self.y[index]
def __len__(self):
return self.len
import torch.nn as nn
class Network(nn.Module):
def __init__(self, input_dim, output_dim):
super(Network, self).__init__()
hidden_layers = (input_dim + output_dim) * 2
self.layer1 = nn.Linear(input_dim, hidden_layers)
self.layer2 = nn.Linear(hidden_layers, hidden_layers)
self.output = nn.Linear(hidden_layers, output_dim)
self.single = nn.Linear(input_dim, output_dim)
self.dropout1 = nn.Dropout(0.9)
self.dropout2 = nn.Dropout(0.2)
self.act1 = nn.Tanh()
self.act2 = nn.ReLU()
self.act0 = nn.Sigmoid()
def forward(self, x):
#x = self.single(x)
x = self.layer1(x)
#x = self.dropout1(x)
#x = self.act1(x)
x = self.layer2(x)
x = self.act2(x)
x = self.output(x)
x = self.act0(x)
return x
# x_train = [[1,1],[1,0],[0,1],[0,0]]
# y_train = [[1,1],[1,0],[-1,0],[-1,-1]]
# x_train = [[1,1], [1,0], [1,0], [0,1], [0,0]]
# y_train = [[-1,-1,1],[1,-1,-1],[-1,1,-1],[-1,1,-1],[-1,0,-1]]
# x_train = [[1,1], [1,1], [1,0], [1,0], [0,1], [0,1], [0,0]]
# y_train = [[-1,-1,1],[-1,0,-1],[1,-1,0],[-1,1,0],[-1,1,-1],[-1,0,-1],[-1,0,-1]]
x_train = [[1,1,1], [1,1,0], [0,1,1], [1,0,1], [1,0,0], [0,1,0], [0,0,1], [0,0,0]]
y_train = [[1,1,1], [1,1,0], [-1,0,0], [1,-1,1], [1,-1,-1], [-1,1,-1], [-1,-1,0], [-1,-1,-1]]
traindata = Data(np.array(x_train), np.array(y_train))
batch_size = min(40, len(y_train))#len(y_train)
trainloader = DataLoader(traindata, batch_size=batch_size, shuffle=True, collate_fn=lambda x: tuple(x_.to(device) for x_ in default_collate(x)))
clf = Network(3, 3)
#clf = Network(input_length + output_length, 1, bias)
clf.to(device)
criterion = nn.BCEWithLogitsLoss().cuda()
#criterion = nn.BCEWithLogitsLoss().cuda()
#criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.Adam(clf.parameters(), lr=0.01)
epochs = 100
for epoch in range(epochs):
y_true = []
y_pred = []
running_loss = 0.0
for i, data in enumerate(trainloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
clf.train()
# forward propagation
outputs = clf(inputs)
#outputs = torch.sigmoid(outputs)
#outputs = torch.softmax(outputs, 1)
# _,indexes = np.where(labels.cpu() != -1)
# indexes = torch.from_numpy(indexes).to(device)
# outputs2 = outputs.index_select(1,indexes)
# labels2 = labels.index_select(1,indexes)
mask = (labels.cpu() != -1).to(device)
outputs2 = outputs.masked_select(mask)
labels2 = labels.masked_select(mask)
loss = criterion(outputs2, labels2.float())
#loss = criterion(outputs, torch.sigmoid(labels.float()))
#loss = criterion(outputs, labels.unsqueeze(1).float())
# set optimizer to zero grad to remove previous epoch gradients
optimizer.zero_grad()
# backward propagation
loss.backward()
# optimize
optimizer.step()
running_loss += loss.item()
#PREDICTIONS
clf.eval()
with torch.no_grad():
pred = np.round(outputs.cpu().detach().numpy())
labels = np.round(labels.cpu().detach().numpy())
# y_pred = pred.tolist()
# y_true = labels.tolist()
y_pred.extend(pred.tolist())
y_true.extend(labels.tolist())
#if epoch % 100 == 99:
# display statistics
#print(f"[{epoch + 1}, {i + 1:5d}]Accuracy on training set is " + str(accuracy_score(y_true,np.array(y_pred))))
#print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / (i + 1):.5f}')
clf.eval()
print([0,0,1])
print(clf(torch.from_numpy(np.array([0,0,1])).to(device).float()))
print([0,1,0])
print(clf(torch.from_numpy(np.array([0,1,0])).to(device).float()))
print([1,0,0])
print(clf(torch.from_numpy(np.array([1,0,0])).to(device).float()))
print([0,0,0])
print(clf(torch.from_numpy(np.array([0,0,0])).to(device).float()))