-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhomework7.py
65 lines (42 loc) · 1.41 KB
/
homework7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
############################################################
# NETS 213: Homework 7
############################################################
import pandas as pd
# Part 1 - Majority vote
def majority_vote(mturk_res):
pass
def majority_vote_workers(mturk_res, votes):
pass
# Part 1 - Weighted majority vote
def weighted_majority_vote_workers(mturk_res):
pass
def weighted_majority_vote(mturk_res, workers):
pass
# Part 2 - EM algorithm
def em_worker_quality(rows, labels):
# the return format should be a dict that maps
# key: 'workerX'
# value: {('fakenews', 'fakenews'): A, ('fakenews', 'notfakenews'): B, ('notfakenews', 'fakenews'): C, ('notfakenews', 'notfakenews'): D}
# where X is a worker index, and A, B, C, D are values between 0.0 and 1.0
pass
def em_votes(rows, worker_qual):
pass
def em_iteration(rows, worker_qual):
labels = em_votes(rows, worker_qual)
worker_qual = em_worker_quality(rows, labels)
return labels, worker_qual
def em_vote(rows, iter_num):
# return both the final labels and the final worker qualities
pass
# Part 3 - Qualified workers
def select_qualified_worker(mturk_res):
pass
# Your main function
def main():
# Read in CVS result file with pandas
# PLEASE DO NOT CHANGE
mturk_res = pd.read_csv('hw7_data.csv')
# Call functions and output required CSV files
pass
if __name__ == '__main__':
main()