forked from data-apis/array-api-compat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_aliases.py
580 lines (495 loc) · 17.6 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
"""
These are functions that are just aliases of existing functions in NumPy.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Optional, Sequence, Tuple, Union
from ._typing import ndarray, Device, Dtype
from typing import NamedTuple
import inspect
from ._helpers import array_namespace, _check_device, device, is_cupy_namespace
# These functions are modified from the NumPy versions.
# Creation functions add the device keyword (which does nothing for NumPy)
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.arange(start, stop=stop, step=step, dtype=dtype, **kwargs)
def empty(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.empty(shape, dtype=dtype, **kwargs)
def empty_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs
) -> ndarray:
_check_device(xp, device)
return xp.empty_like(x, dtype=dtype, **kwargs)
def eye(
n_rows: int,
n_cols: Optional[int] = None,
/,
*,
xp,
k: int = 0,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.eye(n_rows, M=n_cols, k=k, dtype=dtype, **kwargs)
def full(
shape: Union[int, Tuple[int, ...]],
fill_value: Union[int, float],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.full(shape, fill_value, dtype=dtype, **kwargs)
def full_like(
x: ndarray,
/,
fill_value: Union[int, float],
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.full_like(x, fill_value, dtype=dtype, **kwargs)
def linspace(
start: Union[int, float],
stop: Union[int, float],
/,
num: int,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
endpoint: bool = True,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.linspace(start, stop, num, dtype=dtype, endpoint=endpoint, **kwargs)
def ones(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.ones(shape, dtype=dtype, **kwargs)
def ones_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.ones_like(x, dtype=dtype, **kwargs)
def zeros(
shape: Union[int, Tuple[int, ...]],
xp,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.zeros(shape, dtype=dtype, **kwargs)
def zeros_like(
x: ndarray, /, xp, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
return xp.zeros_like(x, dtype=dtype, **kwargs)
# np.unique() is split into four functions in the array API:
# unique_all, unique_counts, unique_inverse, and unique_values (this is done
# to remove polymorphic return types).
# The functions here return namedtuples (np.unique() returns a normal
# tuple).
# Note that these named tuples aren't actually part of the standard namespace,
# but I don't see any issue with exporting the names here regardless.
class UniqueAllResult(NamedTuple):
values: ndarray
indices: ndarray
inverse_indices: ndarray
counts: ndarray
class UniqueCountsResult(NamedTuple):
values: ndarray
counts: ndarray
class UniqueInverseResult(NamedTuple):
values: ndarray
inverse_indices: ndarray
def _unique_kwargs(xp):
# Older versions of NumPy and CuPy do not have equal_nan. Rather than
# trying to parse version numbers, just check if equal_nan is in the
# signature.
s = inspect.signature(xp.unique)
if 'equal_nan' in s.parameters:
return {'equal_nan': False}
return {}
def unique_all(x: ndarray, /, xp) -> UniqueAllResult:
kwargs = _unique_kwargs(xp)
values, indices, inverse_indices, counts = xp.unique(
x,
return_counts=True,
return_index=True,
return_inverse=True,
**kwargs,
)
# np.unique() flattens inverse indices, but they need to share x's shape
# See https://github.com/numpy/numpy/issues/20638
inverse_indices = inverse_indices.reshape(x.shape)
return UniqueAllResult(
values,
indices,
inverse_indices,
counts,
)
def unique_counts(x: ndarray, /, xp) -> UniqueCountsResult:
kwargs = _unique_kwargs(xp)
res = xp.unique(
x,
return_counts=True,
return_index=False,
return_inverse=False,
**kwargs
)
return UniqueCountsResult(*res)
def unique_inverse(x: ndarray, /, xp) -> UniqueInverseResult:
kwargs = _unique_kwargs(xp)
values, inverse_indices = xp.unique(
x,
return_counts=False,
return_index=False,
return_inverse=True,
**kwargs,
)
# xp.unique() flattens inverse indices, but they need to share x's shape
# See https://github.com/numpy/numpy/issues/20638
inverse_indices = inverse_indices.reshape(x.shape)
return UniqueInverseResult(values, inverse_indices)
def unique_values(x: ndarray, /, xp) -> ndarray:
kwargs = _unique_kwargs(xp)
return xp.unique(
x,
return_counts=False,
return_index=False,
return_inverse=False,
**kwargs,
)
# These functions have different keyword argument names
def std(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0, # correction instead of ddof
keepdims: bool = False,
**kwargs,
) -> ndarray:
return xp.std(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
def var(
x: ndarray,
/,
xp,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0, # correction instead of ddof
keepdims: bool = False,
**kwargs,
) -> ndarray:
return xp.var(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)
# cumulative_sum is renamed from cumsum, and adds the include_initial keyword
# argument
def cumulative_sum(
x: ndarray,
/,
xp,
*,
axis: Optional[int] = None,
dtype: Optional[Dtype] = None,
include_initial: bool = False,
**kwargs
) -> ndarray:
wrapped_xp = array_namespace(x)
# TODO: The standard is not clear about what should happen when x.ndim == 0.
if axis is None:
if x.ndim > 1:
raise ValueError("axis must be specified in cumulative_sum for more than one dimension")
axis = 0
res = xp.cumsum(x, axis=axis, dtype=dtype, **kwargs)
# np.cumsum does not support include_initial
if include_initial:
initial_shape = list(x.shape)
initial_shape[axis] = 1
res = xp.concatenate(
[wrapped_xp.zeros(shape=initial_shape, dtype=res.dtype, device=device(res)), res],
axis=axis,
)
return res
def cumulative_prod(
x: ndarray,
/,
xp,
*,
axis: Optional[int] = None,
dtype: Optional[Dtype] = None,
include_initial: bool = False,
**kwargs
) -> ndarray:
wrapped_xp = array_namespace(x)
if axis is None:
if x.ndim > 1:
raise ValueError("axis must be specified in cumulative_prod for more than one dimension")
axis = 0
res = xp.cumprod(x, axis=axis, dtype=dtype, **kwargs)
# np.cumprod does not support include_initial
if include_initial:
initial_shape = list(x.shape)
initial_shape[axis] = 1
res = xp.concatenate(
[wrapped_xp.ones(shape=initial_shape, dtype=res.dtype, device=device(res)), res],
axis=axis,
)
return res
# The min and max argument names in clip are different and not optional in numpy, and type
# promotion behavior is different.
def clip(
x: ndarray,
/,
min: Optional[Union[int, float, ndarray]] = None,
max: Optional[Union[int, float, ndarray]] = None,
*,
xp,
# TODO: np.clip has other ufunc kwargs
out: Optional[ndarray] = None,
) -> ndarray:
def _isscalar(a):
return isinstance(a, (int, float, type(None)))
min_shape = () if _isscalar(min) else min.shape
max_shape = () if _isscalar(max) else max.shape
wrapped_xp = array_namespace(x)
result_shape = xp.broadcast_shapes(x.shape, min_shape, max_shape)
# np.clip does type promotion but the array API clip requires that the
# output have the same dtype as x. We do this instead of just downcasting
# the result of xp.clip() to handle some corner cases better (e.g.,
# avoiding uint64 -> float64 promotion).
# Note: cases where min or max overflow (integer) or round (float) in the
# wrong direction when downcasting to x.dtype are unspecified. This code
# just does whatever NumPy does when it downcasts in the assignment, but
# other behavior could be preferred, especially for integers. For example,
# this code produces:
# >>> clip(asarray(0, dtype=int8), asarray(128, dtype=int16), None)
# -128
# but an answer of 0 might be preferred. See
# https://github.com/numpy/numpy/issues/24976 for more discussion on this issue.
# At least handle the case of Python integers correctly (see
# https://github.com/numpy/numpy/pull/26892).
if type(min) is int and min <= wrapped_xp.iinfo(x.dtype).min:
min = None
if type(max) is int and max >= wrapped_xp.iinfo(x.dtype).max:
max = None
dev = device(x)
if out is None:
out = wrapped_xp.empty(result_shape, dtype=x.dtype, device=dev)
out[()] = x
if min is not None:
a = wrapped_xp.asarray(min, dtype=x.dtype, device=dev)
a = xp.broadcast_to(a, result_shape)
ia = (out < a) | xp.isnan(a)
out[ia] = a[ia]
if max is not None:
b = wrapped_xp.asarray(max, dtype=x.dtype, device=dev)
b = xp.broadcast_to(b, result_shape)
ib = (out > b) | xp.isnan(b)
out[ib] = b[ib]
# Return a scalar for 0-D
return out[()]
# Unlike transpose(), the axes argument to permute_dims() is required.
def permute_dims(x: ndarray, /, axes: Tuple[int, ...], xp) -> ndarray:
return xp.transpose(x, axes)
# np.reshape calls the keyword argument 'newshape' instead of 'shape'
def reshape(x: ndarray,
/,
shape: Tuple[int, ...],
xp, copy: Optional[bool] = None,
**kwargs) -> ndarray:
if copy is True:
x = x.copy()
elif copy is False:
y = x.view()
y.shape = shape
return y
return xp.reshape(x, shape, **kwargs)
# The descending keyword is new in sort and argsort, and 'kind' replaced with
# 'stable'
def argsort(
x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
**kwargs,
) -> ndarray:
# Note: this keyword argument is different, and the default is different.
# We set it in kwargs like this because numpy.sort uses kind='quicksort'
# as the default whereas cupy.sort uses kind=None.
if stable:
kwargs['kind'] = "stable"
if not descending:
res = xp.argsort(x, axis=axis, **kwargs)
else:
# As NumPy has no native descending sort, we imitate it here. Note that
# simply flipping the results of xp.argsort(x, ...) would not
# respect the relative order like it would in native descending sorts.
res = xp.flip(
xp.argsort(xp.flip(x, axis=axis), axis=axis, **kwargs),
axis=axis,
)
# Rely on flip()/argsort() to validate axis
normalised_axis = axis if axis >= 0 else x.ndim + axis
max_i = x.shape[normalised_axis] - 1
res = max_i - res
return res
def sort(
x: ndarray, /, xp, *, axis: int = -1, descending: bool = False, stable: bool = True,
**kwargs,
) -> ndarray:
# Note: this keyword argument is different, and the default is different.
# We set it in kwargs like this because numpy.sort uses kind='quicksort'
# as the default whereas cupy.sort uses kind=None.
if stable:
kwargs['kind'] = "stable"
res = xp.sort(x, axis=axis, **kwargs)
if descending:
res = xp.flip(res, axis=axis)
return res
# nonzero should error for zero-dimensional arrays
def nonzero(x: ndarray, /, xp, **kwargs) -> Tuple[ndarray, ...]:
if x.ndim == 0:
raise ValueError("nonzero() does not support zero-dimensional arrays")
return xp.nonzero(x, **kwargs)
# ceil, floor, and trunc return integers for integer inputs
def ceil(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.ceil(x, **kwargs)
def floor(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.floor(x, **kwargs)
def trunc(x: ndarray, /, xp, **kwargs) -> ndarray:
if xp.issubdtype(x.dtype, xp.integer):
return x
return xp.trunc(x, **kwargs)
# linear algebra functions
def matmul(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
return xp.matmul(x1, x2, **kwargs)
# Unlike transpose, matrix_transpose only transposes the last two axes.
def matrix_transpose(x: ndarray, /, xp) -> ndarray:
if x.ndim < 2:
raise ValueError("x must be at least 2-dimensional for matrix_transpose")
return xp.swapaxes(x, -1, -2)
def tensordot(x1: ndarray,
x2: ndarray,
/,
xp,
*,
axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2,
**kwargs,
) -> ndarray:
return xp.tensordot(x1, x2, axes=axes, **kwargs)
def vecdot(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1) -> ndarray:
if x1.shape[axis] != x2.shape[axis]:
raise ValueError("x1 and x2 must have the same size along the given axis")
if hasattr(xp, 'broadcast_tensors'):
_broadcast = xp.broadcast_tensors
else:
_broadcast = xp.broadcast_arrays
x1_ = xp.moveaxis(x1, axis, -1)
x2_ = xp.moveaxis(x2, axis, -1)
x1_, x2_ = _broadcast(x1_, x2_)
res = xp.conj(x1_[..., None, :]) @ x2_[..., None]
return res[..., 0, 0]
# isdtype is a new function in the 2022.12 array API specification.
def isdtype(
dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]], xp,
*, _tuple=True, # Disallow nested tuples
) -> bool:
"""
Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
Note that outside of this function, this compat library does not yet fully
support complex numbers.
See
https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
for more details
"""
if isinstance(kind, tuple) and _tuple:
return any(isdtype(dtype, k, xp, _tuple=False) for k in kind)
elif isinstance(kind, str):
if kind == 'bool':
return dtype == xp.bool_
elif kind == 'signed integer':
return xp.issubdtype(dtype, xp.signedinteger)
elif kind == 'unsigned integer':
return xp.issubdtype(dtype, xp.unsignedinteger)
elif kind == 'integral':
return xp.issubdtype(dtype, xp.integer)
elif kind == 'real floating':
return xp.issubdtype(dtype, xp.floating)
elif kind == 'complex floating':
return xp.issubdtype(dtype, xp.complexfloating)
elif kind == 'numeric':
return xp.issubdtype(dtype, xp.number)
else:
raise ValueError(f"Unrecognized data type kind: {kind!r}")
else:
# This will allow things that aren't required by the spec, like
# isdtype(np.float64, float) or isdtype(np.int64, 'l'). Should we be
# more strict here to match the type annotation? Note that the
# array_api_strict implementation will be very strict.
return dtype == kind
# unstack is a new function in the 2023.12 array API standard
def unstack(x: ndarray, /, xp, *, axis: int = 0) -> Tuple[ndarray, ...]:
if x.ndim == 0:
raise ValueError("Input array must be at least 1-d.")
return tuple(xp.moveaxis(x, axis, 0))
# numpy 1.26 does not use the standard definition for sign on complex numbers
def sign(x: ndarray, /, xp, **kwargs) -> ndarray:
if isdtype(x.dtype, 'complex floating', xp=xp):
out = (x/xp.abs(x, **kwargs))[...]
# sign(0) = 0 but the above formula would give nan
out[x == 0+0j] = 0+0j
else:
out = xp.sign(x, **kwargs)
# CuPy sign() does not propagate nans. See
# https://github.com/data-apis/array-api-compat/issues/136
if is_cupy_namespace(xp) and isdtype(x.dtype, 'real floating', xp=xp):
out[xp.isnan(x)] = xp.nan
return out[()]
__all__ = ['arange', 'empty', 'empty_like', 'eye', 'full', 'full_like',
'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like',
'UniqueAllResult', 'UniqueCountsResult', 'UniqueInverseResult',
'unique_all', 'unique_counts', 'unique_inverse', 'unique_values',
'std', 'var', 'cumulative_sum', 'cumulative_prod','clip', 'permute_dims',
'reshape', 'argsort', 'sort', 'nonzero', 'ceil', 'floor', 'trunc',
'matmul', 'matrix_transpose', 'tensordot', 'vecdot', 'isdtype',
'unstack', 'sign']