forked from data-apis/array-api-extra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_funcs.py
749 lines (615 loc) · 22.5 KB
/
_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
"""Array-agnostic implementations for the public API."""
# https://github.com/scikit-learn/scikit-learn/pull/27910#issuecomment-2568023972
from __future__ import annotations
import math
import warnings
from collections.abc import Sequence
from types import ModuleType
from typing import cast
from ._at import at
from ._utils import _compat, _helpers
from ._utils._compat import array_namespace, is_jax_array
from ._utils._helpers import asarrays
from ._utils._typing import Array
__all__ = [
"atleast_nd",
"broadcast_shapes",
"cov",
"create_diagonal",
"expand_dims",
"kron",
"nunique",
"pad",
"setdiff1d",
"sinc",
]
def atleast_nd(x: Array, /, *, ndim: int, xp: ModuleType | None = None) -> Array:
"""
Recursively expand the dimension of an array to at least `ndim`.
Parameters
----------
x : array
Input array.
ndim : int
The minimum number of dimensions for the result.
xp : array_namespace, optional
The standard-compatible namespace for `x`. Default: infer.
Returns
-------
array
An array with ``res.ndim`` >= `ndim`.
If ``x.ndim`` >= `ndim`, `x` is returned.
If ``x.ndim`` < `ndim`, `x` is expanded by prepending new axes
until ``res.ndim`` equals `ndim`.
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> x = xp.asarray([1])
>>> xpx.atleast_nd(x, ndim=3, xp=xp)
Array([[[1]]], dtype=array_api_strict.int64)
>>> x = xp.asarray([[[1, 2],
... [3, 4]]])
>>> xpx.atleast_nd(x, ndim=1, xp=xp) is x
True
"""
if xp is None:
xp = array_namespace(x)
if x.ndim < ndim:
x = xp.expand_dims(x, axis=0)
x = atleast_nd(x, ndim=ndim, xp=xp)
return x
# `float` in signature to accept `math.nan` for Dask.
# `int`s are still accepted as `float` is a superclass of `int` in typing
def broadcast_shapes(*shapes: tuple[float | None, ...]) -> tuple[int | None, ...]:
"""
Compute the shape of the broadcasted arrays.
Duplicates :func:`numpy.broadcast_shapes`, with additional support for
None and NaN sizes.
This is equivalent to ``xp.broadcast_arrays(arr1, arr2, ...)[0].shape``
without needing to worry about the backend potentially deep copying
the arrays.
Parameters
----------
*shapes : tuple[int | None, ...]
Shapes of the arrays to broadcast.
Returns
-------
tuple[int | None, ...]
The shape of the broadcasted arrays.
See Also
--------
numpy.broadcast_shapes : Equivalent NumPy function.
array_api.broadcast_arrays : Function to broadcast actual arrays.
Notes
-----
This function accepts the Array API's ``None`` for unknown sizes,
as well as Dask's non-standard ``math.nan``.
Regardless of input, the output always contains ``None`` for unknown sizes.
Examples
--------
>>> import array_api_extra as xpx
>>> xpx.broadcast_shapes((2, 3), (2, 1))
(2, 3)
>>> xpx.broadcast_shapes((4, 2, 3), (2, 1), (1, 3))
(4, 2, 3)
"""
if not shapes:
return () # Match numpy output
ndim = max(len(shape) for shape in shapes)
out: list[int | None] = []
for axis in range(-ndim, 0):
sizes = {shape[axis] for shape in shapes if axis >= -len(shape)}
# Dask uses NaN for unknown shape, which predates the Array API spec for None
none_size = None in sizes or math.nan in sizes
sizes -= {1, None, math.nan}
if len(sizes) > 1:
msg = (
"shape mismatch: objects cannot be broadcast to a single shape: "
f"{shapes}."
)
raise ValueError(msg)
out.append(None if none_size else cast(int, sizes.pop()) if sizes else 1)
return tuple(out)
def cov(m: Array, /, *, xp: ModuleType | None = None) -> Array:
"""
Estimate a covariance matrix.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element :math:`C_{ij}` is the covariance of
:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
of :math:`x_i`.
This provides a subset of the functionality of ``numpy.cov``.
Parameters
----------
m : array
A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables.
xp : array_namespace, optional
The standard-compatible namespace for `m`. Default: infer.
Returns
-------
array
The covariance matrix of the variables.
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
Consider two variables, :math:`x_0` and :math:`x_1`, which
correlate perfectly, but in opposite directions:
>>> x = xp.asarray([[0, 2], [1, 1], [2, 0]]).T
>>> x
Array([[0, 1, 2],
[2, 1, 0]], dtype=array_api_strict.int64)
Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
matrix shows this clearly:
>>> xpx.cov(x, xp=xp)
Array([[ 1., -1.],
[-1., 1.]], dtype=array_api_strict.float64)
Note that element :math:`C_{0,1}`, which shows the correlation between
:math:`x_0` and :math:`x_1`, is negative.
Further, note how `x` and `y` are combined:
>>> x = xp.asarray([-2.1, -1, 4.3])
>>> y = xp.asarray([3, 1.1, 0.12])
>>> X = xp.stack((x, y), axis=0)
>>> xpx.cov(X, xp=xp)
Array([[11.71 , -4.286 ],
[-4.286 , 2.14413333]], dtype=array_api_strict.float64)
>>> xpx.cov(x, xp=xp)
Array(11.71, dtype=array_api_strict.float64)
>>> xpx.cov(y, xp=xp)
Array(2.14413333, dtype=array_api_strict.float64)
"""
if xp is None:
xp = array_namespace(m)
m = xp.asarray(m, copy=True)
dtype = (
xp.float64 if xp.isdtype(m.dtype, "integral") else xp.result_type(m, xp.float64)
)
m = atleast_nd(m, ndim=2, xp=xp)
m = xp.astype(m, dtype)
avg = _helpers.mean(m, axis=1, xp=xp)
fact = m.shape[1] - 1
if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=2)
fact = 0.0
m -= avg[:, None]
m_transpose = m.T
if xp.isdtype(m_transpose.dtype, "complex floating"):
m_transpose = xp.conj(m_transpose)
c = m @ m_transpose
c /= fact
axes = tuple(axis for axis, length in enumerate(c.shape) if length == 1)
return xp.squeeze(c, axis=axes)
def create_diagonal(
x: Array, /, *, offset: int = 0, xp: ModuleType | None = None
) -> Array:
"""
Construct a diagonal array.
Parameters
----------
x : array
A 1-D array.
offset : int, optional
Offset from the leading diagonal (default is ``0``).
Use positive ints for diagonals above the leading diagonal,
and negative ints for diagonals below the leading diagonal.
xp : array_namespace, optional
The standard-compatible namespace for `x`. Default: infer.
Returns
-------
array
A 2-D array with `x` on the diagonal (offset by `offset`).
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> x = xp.asarray([2, 4, 8])
>>> xpx.create_diagonal(x, xp=xp)
Array([[2, 0, 0],
[0, 4, 0],
[0, 0, 8]], dtype=array_api_strict.int64)
>>> xpx.create_diagonal(x, offset=-2, xp=xp)
Array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[2, 0, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 8, 0, 0]], dtype=array_api_strict.int64)
"""
if xp is None:
xp = array_namespace(x)
if x.ndim != 1:
err_msg = "`x` must be 1-dimensional."
raise ValueError(err_msg)
n = x.shape[0] + abs(offset)
diag = xp.zeros(n**2, dtype=x.dtype, device=_compat.device(x))
start = offset if offset >= 0 else abs(offset) * n
stop = min(n * (n - offset), diag.shape[0])
step = n + 1
diag = at(diag)[start:stop:step].set(x)
return xp.reshape(diag, (n, n))
def expand_dims(
a: Array, /, *, axis: int | tuple[int, ...] = (0,), xp: ModuleType | None = None
) -> Array:
"""
Expand the shape of an array.
Insert (a) new axis/axes that will appear at the position(s) specified by
`axis` in the expanded array shape.
This is ``xp.expand_dims`` for `axis` an int *or a tuple of ints*.
Roughly equivalent to ``numpy.expand_dims`` for NumPy arrays.
Parameters
----------
a : array
Array to have its shape expanded.
axis : int or tuple of ints, optional
Position(s) in the expanded axes where the new axis (or axes) is/are placed.
If multiple positions are provided, they should be unique (note that a position
given by a positive index could also be referred to by a negative index -
that will also result in an error).
Default: ``(0,)``.
xp : array_namespace, optional
The standard-compatible namespace for `a`. Default: infer.
Returns
-------
array
`a` with an expanded shape.
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> x = xp.asarray([1, 2])
>>> x.shape
(2,)
The following is equivalent to ``x[xp.newaxis, :]`` or ``x[xp.newaxis]``:
>>> y = xpx.expand_dims(x, axis=0, xp=xp)
>>> y
Array([[1, 2]], dtype=array_api_strict.int64)
>>> y.shape
(1, 2)
The following is equivalent to ``x[:, xp.newaxis]``:
>>> y = xpx.expand_dims(x, axis=1, xp=xp)
>>> y
Array([[1],
[2]], dtype=array_api_strict.int64)
>>> y.shape
(2, 1)
``axis`` may also be a tuple:
>>> y = xpx.expand_dims(x, axis=(0, 1), xp=xp)
>>> y
Array([[[1, 2]]], dtype=array_api_strict.int64)
>>> y = xpx.expand_dims(x, axis=(2, 0), xp=xp)
>>> y
Array([[[1],
[2]]], dtype=array_api_strict.int64)
"""
if xp is None:
xp = array_namespace(a)
if not isinstance(axis, tuple):
axis = (axis,)
ndim = a.ndim + len(axis)
if axis != () and (min(axis) < -ndim or max(axis) >= ndim):
err_msg = (
f"a provided axis position is out of bounds for array of dimension {a.ndim}"
)
raise IndexError(err_msg)
axis = tuple(dim % ndim for dim in axis)
if len(set(axis)) != len(axis):
err_msg = "Duplicate dimensions specified in `axis`."
raise ValueError(err_msg)
for i in sorted(axis):
a = xp.expand_dims(a, axis=i)
return a
def isclose(
a: Array,
b: Array,
*,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
xp: ModuleType,
) -> Array: # numpydoc ignore=PR01,RT01
"""See docstring in array_api_extra._delegation."""
a, b = asarrays(a, b, xp=xp)
a_inexact = xp.isdtype(a.dtype, ("real floating", "complex floating"))
b_inexact = xp.isdtype(b.dtype, ("real floating", "complex floating"))
if a_inexact or b_inexact:
# FIXME: use scipy's lazywhere to suppress warnings on inf
out = xp.abs(a - b) <= (atol + rtol * xp.abs(b))
out = xp.where(xp.isinf(a) & xp.isinf(b), xp.sign(a) == xp.sign(b), out)
if equal_nan:
out = xp.where(xp.isnan(a) & xp.isnan(b), xp.asarray(True), out)
return out
if xp.isdtype(a.dtype, "bool") or xp.isdtype(b.dtype, "bool"):
if atol >= 1 or rtol >= 1:
return xp.ones_like(a == b)
return a == b
# integer types
atol = int(atol)
if rtol == 0:
return xp.abs(a - b) <= atol
try:
nrtol = xp.asarray(int(1.0 / rtol), dtype=b.dtype)
except OverflowError:
# rtol * max_int(dtype) < 1, so it's inconsequential
return xp.abs(a - b) <= atol
return xp.abs(a - b) <= (atol + xp.abs(b) // nrtol)
def kron(a: Array, b: Array, /, *, xp: ModuleType | None = None) -> Array:
"""
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.
Equivalent to ``numpy.kron`` for NumPy arrays.
Parameters
----------
a, b : Array | int | float | complex
Input arrays or scalars. At least one must be an array.
xp : array_namespace, optional
The standard-compatible namespace for `a` and `b`. Default: infer.
Returns
-------
array
The Kronecker product of `a` and `b`.
Notes
-----
The function assumes that the number of dimensions of `a` and `b`
are the same, if necessary prepending the smallest with ones.
If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
The elements are products of elements from `a` and `b`, organized
explicitly by::
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where::
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized::
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> xpx.kron(xp.asarray([1, 10, 100]), xp.asarray([5, 6, 7]), xp=xp)
Array([ 5, 6, 7, 50, 60, 70, 500,
600, 700], dtype=array_api_strict.int64)
>>> xpx.kron(xp.asarray([5, 6, 7]), xp.asarray([1, 10, 100]), xp=xp)
Array([ 5, 50, 500, 6, 60, 600, 7,
70, 700], dtype=array_api_strict.int64)
>>> xpx.kron(xp.eye(2), xp.ones((2, 2)), xp=xp)
Array([[1., 1., 0., 0.],
[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]], dtype=array_api_strict.float64)
>>> a = xp.reshape(xp.arange(100), (2, 5, 2, 5))
>>> b = xp.reshape(xp.arange(24), (2, 3, 4))
>>> c = xpx.kron(a, b, xp=xp)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1, 3, 0, 2)
>>> J = (0, 2, 1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(xp.asarray(I) * xp.asarray(S1) + xp.asarray(J1))
>>> c[K] == a[I]*b[J]
Array(True, dtype=array_api_strict.bool)
"""
if xp is None:
xp = array_namespace(a, b)
a, b = asarrays(a, b, xp=xp)
singletons = (1,) * (b.ndim - a.ndim)
a = xp.broadcast_to(a, singletons + a.shape)
nd_b, nd_a = b.ndim, a.ndim
nd_max = max(nd_b, nd_a)
if nd_a == 0 or nd_b == 0:
return xp.multiply(a, b)
a_shape = a.shape
b_shape = b.shape
# Equalise the shapes by prepending smaller one with 1s
a_shape = (1,) * max(0, nd_b - nd_a) + a_shape
b_shape = (1,) * max(0, nd_a - nd_b) + b_shape
# Insert empty dimensions
a_arr = expand_dims(a, axis=tuple(range(nd_b - nd_a)), xp=xp)
b_arr = expand_dims(b, axis=tuple(range(nd_a - nd_b)), xp=xp)
# Compute the product
a_arr = expand_dims(a_arr, axis=tuple(range(1, nd_max * 2, 2)), xp=xp)
b_arr = expand_dims(b_arr, axis=tuple(range(0, nd_max * 2, 2)), xp=xp)
result = xp.multiply(a_arr, b_arr)
# Reshape back and return
res_shape = tuple(a_s * b_s for a_s, b_s in zip(a_shape, b_shape, strict=True))
return xp.reshape(result, res_shape)
def nunique(x: Array, /, *, xp: ModuleType | None = None) -> Array:
"""
Count the number of unique elements in an array.
Compatible with JAX and Dask, whose laziness would be otherwise
problematic.
Parameters
----------
x : Array
Input array.
xp : array_namespace, optional
The standard-compatible namespace for `x`. Default: infer.
Returns
-------
array: 0-dimensional integer array
The number of unique elements in `x`. It can be lazy.
"""
if xp is None:
xp = array_namespace(x)
if is_jax_array(x):
# size= is JAX-specific
# https://github.com/data-apis/array-api/issues/883
_, counts = xp.unique_counts(x, size=_compat.size(x))
return xp.astype(counts, xp.bool).sum()
_, counts = xp.unique_counts(x)
n = _compat.size(counts)
# FIXME https://github.com/data-apis/array-api-compat/pull/231
if n is None or math.isnan(n): # e.g. Dask, ndonnx
return xp.astype(counts, xp.bool).sum()
return xp.asarray(n, device=_compat.device(x))
def pad(
x: Array,
pad_width: int | tuple[int, int] | Sequence[tuple[int, int]],
*,
constant_values: bool | int | float | complex = 0,
xp: ModuleType,
) -> Array: # numpydoc ignore=PR01,RT01
"""See docstring in `array_api_extra._delegation.py`."""
# make pad_width a list of length-2 tuples of ints
x_ndim = cast(int, x.ndim)
if isinstance(pad_width, int):
pad_width_seq = [(pad_width, pad_width)] * x_ndim
elif (
isinstance(pad_width, tuple)
and len(pad_width) == 2
and all(isinstance(i, int) for i in pad_width)
):
pad_width_seq = [cast(tuple[int, int], pad_width)] * x_ndim
else:
pad_width_seq = cast(list[tuple[int, int]], list(pad_width))
# https://github.com/python/typeshed/issues/13376
slices: list[slice] = [] # type: ignore[no-any-explicit]
newshape: list[int] = []
for ax, w_tpl in enumerate(pad_width_seq):
if len(w_tpl) != 2:
msg = f"expect a 2-tuple (before, after), got {w_tpl}."
raise ValueError(msg)
sh = x.shape[ax]
if w_tpl[0] == 0 and w_tpl[1] == 0:
sl = slice(None, None, None)
else:
start, stop = w_tpl
stop = None if stop == 0 else -stop
sl = slice(start, stop, None)
sh += w_tpl[0] + w_tpl[1]
newshape.append(sh)
slices.append(sl)
padded = xp.full(
tuple(newshape),
fill_value=constant_values,
dtype=x.dtype,
device=_compat.device(x),
)
return at(padded, tuple(slices)).set(x)
def setdiff1d(
x1: Array,
x2: Array,
/,
*,
assume_unique: bool = False,
xp: ModuleType | None = None,
) -> Array:
"""
Find the set difference of two arrays.
Return the unique values in `x1` that are not in `x2`.
Parameters
----------
x1 : array
Input array.
x2 : array
Input comparison array.
assume_unique : bool
If ``True``, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is ``False``.
xp : array_namespace, optional
The standard-compatible namespace for `x1` and `x2`. Default: infer.
Returns
-------
array
1D array of values in `x1` that are not in `x2`. The result
is sorted when `assume_unique` is ``False``, but otherwise only sorted
if the input is sorted.
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> x1 = xp.asarray([1, 2, 3, 2, 4, 1])
>>> x2 = xp.asarray([3, 4, 5, 6])
>>> xpx.setdiff1d(x1, x2, xp=xp)
Array([1, 2], dtype=array_api_strict.int64)
"""
if xp is None:
xp = array_namespace(x1, x2)
x1, x2 = asarrays(x1, x2, xp=xp)
if assume_unique:
x1 = xp.reshape(x1, (-1,))
x2 = xp.reshape(x2, (-1,))
else:
x1 = xp.unique_values(x1)
x2 = xp.unique_values(x2)
return x1[_helpers.in1d(x1, x2, assume_unique=True, invert=True, xp=xp)]
def sinc(x: Array, /, *, xp: ModuleType | None = None) -> Array:
r"""
Return the normalized sinc function.
The sinc function is equal to :math:`\sin(\pi x)/(\pi x)` for any argument
:math:`x\ne 0`. ``sinc(0)`` takes the limit value 1, making ``sinc`` not
only everywhere continuous but also infinitely differentiable.
.. note::
Note the normalization factor of ``pi`` used in the definition.
This is the most commonly used definition in signal processing.
Use ``sinc(x / xp.pi)`` to obtain the unnormalized sinc function
:math:`\sin(x)/x` that is more common in mathematics.
Parameters
----------
x : array
Array (possibly multi-dimensional) of values for which to calculate
``sinc(x)``. Must have a real floating point dtype.
xp : array_namespace, optional
The standard-compatible namespace for `x`. Default: infer.
Returns
-------
array
``sinc(x)`` calculated elementwise, which has the same shape as the input.
Notes
-----
The name sinc is short for "sine cardinal" or "sinus cardinalis".
The sinc function is used in various signal processing applications,
including in anti-aliasing, in the construction of a Lanczos resampling
filter, and in interpolation.
For bandlimited interpolation of discrete-time signals, the ideal
interpolation kernel is proportional to the sinc function.
References
----------
#. Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web
Resource. https://mathworld.wolfram.com/SincFunction.html
#. Wikipedia, "Sinc function",
https://en.wikipedia.org/wiki/Sinc_function
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
>>> x = xp.linspace(-4, 4, 41)
>>> xpx.sinc(x, xp=xp)
Array([-3.89817183e-17, -4.92362781e-02,
-8.40918587e-02, -8.90384387e-02,
-5.84680802e-02, 3.89817183e-17,
6.68206631e-02, 1.16434881e-01,
1.26137788e-01, 8.50444803e-02,
-3.89817183e-17, -1.03943254e-01,
-1.89206682e-01, -2.16236208e-01,
-1.55914881e-01, 3.89817183e-17,
2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01,
1.00000000e+00, 9.35489284e-01,
7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89817183e-17,
-1.55914881e-01, -2.16236208e-01,
-1.89206682e-01, -1.03943254e-01,
-3.89817183e-17, 8.50444803e-02,
1.26137788e-01, 1.16434881e-01,
6.68206631e-02, 3.89817183e-17,
-5.84680802e-02, -8.90384387e-02,
-8.40918587e-02, -4.92362781e-02,
-3.89817183e-17], dtype=array_api_strict.float64)
"""
if xp is None:
xp = array_namespace(x)
if not xp.isdtype(x.dtype, "real floating"):
err_msg = "`x` must have a real floating data type."
raise ValueError(err_msg)
# no scalars in `where` - array-api#807
y = xp.pi * xp.where(
xp.astype(x, xp.bool),
x,
xp.asarray(xp.finfo(x.dtype).eps, dtype=x.dtype, device=_compat.device(x)),
)
return xp.sin(y) / y