forked from data-apis/array-api-strict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_elementwise_functions.py
699 lines (537 loc) · 22.9 KB
/
_elementwise_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import numpy as np
from ._array_object import Array
from ._creation_functions import asarray
from ._data_type_functions import broadcast_to, iinfo
from ._dtypes import (
_boolean_dtypes,
_complex_floating_dtypes,
_dtype_categories,
_floating_dtypes,
_integer_dtypes,
_integer_or_boolean_dtypes,
_numeric_dtypes,
_real_floating_dtypes,
_real_numeric_dtypes,
_result_type,
)
from ._flags import requires_api_version
from ._helpers import _maybe_normalize_py_scalars
def _binary_ufunc_proto(x1, x2, dtype_category, func_name, np_func):
"""Base implementation of a binary function, `func_name`, defined for
dtypes from `dtype_category`
"""
x1, x2 = _maybe_normalize_py_scalars(x1, x2, dtype_category, func_name)
if x1.device != x2.device:
raise ValueError(
f"Arrays from two different devices ({x1.device} and {x2.device}) can not be combined."
)
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np_func(x1._array, x2._array), device=x1.device)
_binary_docstring_template = """
Array API compatible wrapper for :py:func:`np.%s <numpy.%s>`.
See its docstring for more information.
"""
def _create_binary_func(func_name, dtype_category, np_func):
def inner(x1, x2, /) -> Array:
return _binary_ufunc_proto(x1, x2, dtype_category, func_name, np_func)
return inner
# static type annotation for ArrayOrPythonScalar arguments given a category
# NB: keep the keys in sync with the _dtype_categories dict
_annotations = {
"all": "bool | int | float | complex | Array",
"real numeric": "int | float | Array",
"numeric": "int | float | complex | Array",
"integer": "int | Array",
"integer or boolean": "bool | int | Array",
"boolean": "bool | Array",
"real floating-point": "float | Array",
"complex floating-point": "complex | Array",
"floating-point": "float | complex | Array",
}
# func_name: dtype_category (must match that from _dtypes.py)
_binary_funcs = {
"add": "numeric",
"atan2": "real floating-point",
"bitwise_and": "integer or boolean",
"bitwise_or": "integer or boolean",
"bitwise_xor": "integer or boolean",
"_bitwise_left_shift": "integer", # leading underscore deliberate
"_bitwise_right_shift": "integer",
# XXX: copysign: real fp or numeric?
"copysign": "real floating-point",
"divide": "floating-point",
"equal": "all",
"greater": "real numeric",
"greater_equal": "real numeric",
"less": "real numeric",
"less_equal": "real numeric",
"not_equal": "all",
"floor_divide": "real numeric",
"hypot": "real floating-point",
"logaddexp": "real floating-point",
"logical_and": "boolean",
"logical_or": "boolean",
"logical_xor": "boolean",
"maximum": "real numeric",
"minimum": "real numeric",
"multiply": "numeric",
"nextafter": "real floating-point",
"pow": "numeric",
"remainder": "real numeric",
"subtract": "numeric",
}
# map array-api-name : numpy-name
_numpy_renames = {
"atan2": "arctan2",
"_bitwise_left_shift": "left_shift",
"_bitwise_right_shift": "right_shift",
"pow": "power",
}
# create and attach functions to the module
for func_name, dtype_category in _binary_funcs.items():
# sanity check
assert dtype_category in _dtype_categories
numpy_name = _numpy_renames.get(func_name, func_name)
np_func = getattr(np, numpy_name)
func = _create_binary_func(func_name, dtype_category, np_func)
func.__name__ = func_name
func.__doc__ = _binary_docstring_template % (numpy_name, numpy_name)
func.__annotations__['x1'] = _annotations[dtype_category]
func.__annotations__['x2'] = _annotations[dtype_category]
vars()[func_name] = func
copysign = requires_api_version('2023.12')(copysign) # noqa: F821
hypot = requires_api_version('2023.12')(hypot) # noqa: F821
maximum = requires_api_version('2023.12')(maximum) # noqa: F821
minimum = requires_api_version('2023.12')(minimum) # noqa: F821
nextafter = requires_api_version('2024.12')(nextafter) # noqa: F821
def bitwise_left_shift(x1: int | Array, x2: int | Array, /) -> Array:
is_negative = np.any(x2._array < 0) if isinstance(x2, Array) else x2 < 0
if is_negative:
raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
return _bitwise_left_shift(x1, x2) # noqa: F821
if _bitwise_left_shift.__doc__: # noqa: F821
bitwise_left_shift.__doc__ = _bitwise_left_shift.__doc__ # noqa: F821
def bitwise_right_shift(x1: int | Array, x2: int | Array, /) -> Array:
is_negative = np.any(x2._array < 0) if isinstance(x2, Array) else x2 < 0
if is_negative:
raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
return _bitwise_right_shift(x1, x2) # noqa: F821
if _bitwise_right_shift.__doc__: # noqa: F821
bitwise_right_shift.__doc__ = _bitwise_right_shift.__doc__ # noqa: F821
# clean up to not pollute the namespace
del func, _create_binary_func
def abs(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in abs")
return Array._new(np.abs(x._array), device=x.device)
# Note: the function name is different here
def acos(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in acos")
return Array._new(np.arccos(x._array), device=x.device)
# Note: the function name is different here
def acosh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in acosh")
return Array._new(np.arccosh(x._array), device=x.device)
# Note: the function name is different here
def asin(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in asin")
return Array._new(np.arcsin(x._array), device=x.device)
# Note: the function name is different here
def asinh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in asinh")
return Array._new(np.arcsinh(x._array), device=x.device)
# Note: the function name is different here
def atan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in atan")
return Array._new(np.arctan(x._array), device=x.device)
# Note: the function name is different here
def atanh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in atanh")
return Array._new(np.arctanh(x._array), device=x.device)
# Note: the function name is different here
def bitwise_invert(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.
See its docstring for more information.
"""
if x.dtype not in _integer_or_boolean_dtypes:
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
return Array._new(np.invert(x._array), device=x.device)
def ceil(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in ceil")
if x.dtype in _integer_dtypes:
# Note: The return dtype of ceil is the same as the input
return x
return Array._new(np.ceil(x._array), device=x.device)
# WARNING: This function is not yet tested by the array-api-tests test suite.
# Note: min and max argument names are different and not optional in numpy.
@requires_api_version('2023.12')
def clip(
x: Array,
/,
min: Array | int | float | None = None,
max: Array | int | float | None = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.clip <numpy.clip>`.
See its docstring for more information.
"""
if isinstance(min, Array) and x.device != min.device:
raise ValueError(f"Arrays from two different devices ({x.device} and {min.device}) can not be combined.")
if isinstance(max, Array) and x.device != max.device:
raise ValueError(f"Arrays from two different devices ({x.device} and {max.device}) can not be combined.")
if (x.dtype not in _real_numeric_dtypes
or isinstance(min, Array) and min.dtype not in _real_numeric_dtypes
or isinstance(max, Array) and max.dtype not in _real_numeric_dtypes):
raise TypeError("Only real numeric dtypes are allowed in clip")
if not isinstance(min, (int, float, Array, type(None))):
raise TypeError("min must be an None, int, float, or an array")
if not isinstance(max, (int, float, Array, type(None))):
raise TypeError("max must be an None, int, float, or an array")
# Mixed dtype kinds is implementation defined
if (x.dtype in _integer_dtypes
and (isinstance(min, float) or
isinstance(min, Array) and min.dtype in _real_floating_dtypes)):
raise TypeError("min must be integral when x is integral")
if (x.dtype in _integer_dtypes
and (isinstance(max, float) or
isinstance(max, Array) and max.dtype in _real_floating_dtypes)):
raise TypeError("max must be integral when x is integral")
if (x.dtype in _real_floating_dtypes
and (isinstance(min, int) or
isinstance(min, Array) and min.dtype in _integer_dtypes)):
raise TypeError("min must be floating-point when x is floating-point")
if (x.dtype in _real_floating_dtypes
and (isinstance(max, int) or
isinstance(max, Array) and max.dtype in _integer_dtypes)):
raise TypeError("max must be floating-point when x is floating-point")
if min is max is None:
# Note: NumPy disallows min = max = None
return x
# Normalize to make the below logic simpler
if min is not None:
min = asarray(min)._array
if max is not None:
max = asarray(max)._array
# min > max is implementation defined
if min is not None and max is not None and np.any(min > max):
raise ValueError("min must be less than or equal to max")
# np.clip does type promotion but the array API clip requires that the
# output have the same dtype as x. We do this instead of just downcasting
# the result of xp.clip() to handle some corner cases better (e.g.,
# avoiding uint64 -> float64 promotion).
# Note: cases where min or max overflow (integer) or round (float) in the
# wrong direction when downcasting to x.dtype are unspecified. This code
# just does whatever NumPy does when it downcasts in the assignment, but
# other behavior could be preferred, especially for integers. For example,
# this code produces:
# >>> clip(asarray(0, dtype=int8), asarray(128, dtype=int16), None)
# -128
# but an answer of 0 might be preferred. See
# https://github.com/numpy/numpy/issues/24976 for more discussion on this issue.
# At least handle the case of Python integers correctly (see
# https://github.com/numpy/numpy/pull/26892).
if type(min) is int and min <= iinfo(x.dtype).min:
min = None
if type(max) is int and max >= iinfo(x.dtype).max:
max = None
def _isscalar(a):
return isinstance(a, (int, float, type(None)))
min_shape = () if _isscalar(min) else min.shape
max_shape = () if _isscalar(max) else max.shape
result_shape = np.broadcast_shapes(x.shape, min_shape, max_shape)
out = asarray(broadcast_to(x, result_shape), copy=True)._array
device = x.device
x = x._array
if min is not None:
a = np.broadcast_to(np.asarray(min), result_shape)
ia = (out < a) | np.isnan(a)
out[ia] = a[ia]
if max is not None:
b = np.broadcast_to(np.asarray(max), result_shape)
ib = (out > b) | np.isnan(b)
out[ib] = b[ib]
return Array._new(out, device=device)
def conj(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in conj")
return Array._new(np.conj(x._array), device=x.device)
def cos(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in cos")
return Array._new(np.cos(x._array), device=x.device)
def cosh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in cosh")
return Array._new(np.cosh(x._array), device=x.device)
def exp(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in exp")
return Array._new(np.exp(x._array), device=x.device)
def expm1(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in expm1")
return Array._new(np.expm1(x._array), device=x.device)
def floor(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in floor")
if x.dtype in _integer_dtypes:
# Note: The return dtype of floor is the same as the input
return x
return Array._new(np.floor(x._array), device=x.device)
def imag(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`.
See its docstring for more information.
"""
if x.dtype not in _complex_floating_dtypes:
raise TypeError("Only complex floating-point dtypes are allowed in imag")
return Array._new(np.imag(x._array), device=x.device)
def isfinite(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isfinite")
return Array._new(np.isfinite(x._array), device=x.device)
def isinf(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isinf")
return Array._new(np.isinf(x._array), device=x.device)
def isnan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isnan")
return Array._new(np.isnan(x._array), device=x.device)
def log(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log <numpy.log>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log")
return Array._new(np.log(x._array), device=x.device)
def log1p(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log1p")
return Array._new(np.log1p(x._array), device=x.device)
def log2(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log2")
return Array._new(np.log2(x._array), device=x.device)
def log10(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log10")
return Array._new(np.log10(x._array), device=x.device)
def logical_not(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.
See its docstring for more information.
"""
if x.dtype not in _boolean_dtypes:
raise TypeError("Only boolean dtypes are allowed in logical_not")
return Array._new(np.logical_not(x._array), device=x.device)
def negative(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in negative")
return Array._new(np.negative(x._array), device=x.device)
def positive(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in positive")
return Array._new(np.positive(x._array), device=x.device)
def real(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.real <numpy.real>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in real")
return Array._new(np.real(x._array), device=x.device)
@requires_api_version('2024.12')
def reciprocal(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.reciprocal <numpy.reciprocal>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in reciprocal")
return Array._new(np.reciprocal(x._array), device=x.device)
def round(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.round <numpy.round>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in round")
return Array._new(np.round(x._array), device=x.device)
def sign(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in sign")
if x.dtype in _complex_floating_dtypes:
return x/abs(x)
return Array._new(np.sign(x._array), device=x.device)
@requires_api_version('2023.12')
def signbit(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.signbit <numpy.signbit>`.
See its docstring for more information.
"""
if x.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in signbit")
return Array._new(np.signbit(x._array), device=x.device)
def sin(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sin")
return Array._new(np.sin(x._array), device=x.device)
def sinh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sinh")
return Array._new(np.sinh(x._array), device=x.device)
def square(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.square <numpy.square>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in square")
return Array._new(np.square(x._array), device=x.device)
def sqrt(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sqrt")
return Array._new(np.sqrt(x._array), device=x.device)
def tan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in tan")
return Array._new(np.tan(x._array), device=x.device)
def tanh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in tanh")
return Array._new(np.tanh(x._array), device=x.device)
def trunc(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in trunc")
if x.dtype in _integer_dtypes:
# Note: The return dtype of trunc is the same as the input
return x
return Array._new(np.trunc(x._array), device=x.device)