-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinpolycube.m
128 lines (115 loc) · 3.75 KB
/
inpolycube.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
function varargout=inpolycube(lonv,latv,lfin,alfa,bita,gama)
% [v,xiv,etav]=INPOLYCUBE(lonv,latv,lfin,alfa,bita,gama)
%
% Finds the indices of a cubed-sphere grid that fall within a polygon
% defined by longitude and latitude pairs in degrees
%
% INPUT:
%
% lonv,latv Same-size arrays to define pairs of longitude and latitude
% lfin Dyadic subdivision of the cubed sphere
% alfa First Euler angle of wholesale tilt of all tiles [defaulted]
% beta Second Euler angle of wholesale tilt of all tiles [defaulted]
% gama Third Euler angle of wholesale tilt of all tiles [defaulted]
%
% OUTPUT:
%
% v An index set that is plottable using PLOTONCUBE
% xiv,etav The cubed-sphere coordinates of the polygon
%
% SEE ALSO:
%
% BOXCUBE, PLOTONCUBE
%
% EXAMPLE:
%
% inpolycube('demo1')
% inpolycube('demo2')
%
% Last modified by fjsimons-at-alum.mit.edu, 10/12/2021
if ~isstr(lonv)
% A default set of contours
lon0=123; lat0=46; rad0=15; npt0=100;
% Ouput first in spherical coordinates
[lon1,lat1]=caploc([lon0 lat0],rad0,npt0,1);
defval('lonv',lon1)
defval('latv',lat1)
% Do all default inputs for the cubed sphere
defval('lfin',7)
defval('alfa',[])
defval('bita',[])
defval('gama',[])
% Convert these inputs to cubed-sphere coordinates
[xiv,etav,fid]=sphere2cube(lonv,latv,alfa,bita,gama);
% Now make the cubed sphere grid in cubed-sphere coordinates
% Produce the Jacobian, the single-face coordinates and the angular
% spacing
% Later might explore changing this but for now it appeas right
eo=1; N=2^lfin+eo;
% The xi,eta coordinates on a single face
[~,~,~,~,XI,ETA]=cubejac(N,N,0);
% Now for every face find whether the grid contains points inside the
% curve or not... will be easy if the coordinates are within a face
v=zeros(N,N,6);
for index=1:6
if ~isempty(xiv{index}) & ~isempty(etav{index})
% This all works fine if everything is WITHIN the face, but what if
% it's straddling more? To add a CORNER point, or a piece of the
% boundary like in INPOLYMOLL
keyboard
v(:,:,index)=inpolygon(XI,ETA,xiv{index},etav{index});
end
end
% Variable output
varns={v,xiv,etav};
varargout=varns(1:nargout);
elseif strcmp(lonv,'demo1')
% A bunch of handpicked ones
lon0=123; lat0=46; rad0=15; npt0=100;
[lon1,lat1]=caploc([lon0 lat0],rad0,npt0,1);
[v1,xiv1,etav1]=inpolycube(lon1,lat1);
lon0=143; lat0=41; rad0=12; npt0=100;
[lon2,lat2]=caploc([lon0 lat0],rad0,npt0,1);
[v2,xiv2,etav2]=inpolycube(lon2,lat2);
lon0=143; lat0=31; rad0=24; npt0=100;
[lon3,lat3]=caploc([lon0 lat0],rad0,npt0,1);
[v3,xiv3,etav3]=inpolycube(lon3,lat3);
% Make the plot of the combined hitcounts
plotoncube(v1+v2+v3,'2D',1);
% Add the contours
hold on
p{1}=plotonchunk(xiv1,etav1);
p{2}=plotonchunk(xiv2,etav2);
p{3}=plotonchunk(xiv3,etav3);
plotcont([],[],9); hold off
set(p{1}(:),'LineStyle','-')
set(p{2}(:),'LineStyle','-')
set(p{3}(:),'LineStyle','-')
elseif strcmp(lonv,'demo2')
% A bunch of random ones
nrand=30;
lon0=rand(nrand,1)*360; lat0=90-rand(nrand,1)*180; rad0=rand(nrand,1)*20; npt0=100;
[lonv,latv]=caploc([lon0 lat0],rad0,npt0,1);
% Find the insides
for index=1:size(lonv,2)
[v{index},xiv{index},etav{index}]=inpolycube(lonv(:,index),latv(:,index));
end
vv=zeros(size(v{1}));
% As many as their are domains
for index=1:size(lonv,2)
% As many as there are faces
for ondex=1:6
vv(:,:,ondex)=vv(:,:,ondex)+v{index}(:,:,ondex);
end
end
% Flatten the result - 3D option requires eo adaptation
plotoncube(vv,'2D',1)
hold on
for index=1:size(lonv,2)
p{index}=plotonchunk(xiv{index},etav{index});
hold on
set(p{index}(:),'LineStyle','-')
end
plotcont([],[],9);
hold off
end