-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
81 lines (64 loc) · 3.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import argparse
import random
from trainers import FPTrainer
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
parser = argparse.ArgumentParser()
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--beta1', default=0.9, type=float, help='momentum term for adam')
parser.add_argument('--batch_size', default=32, type=int, help='batch size')
parser.add_argument('--log_dir', default='./logs/', help='base directory to save logs')
parser.add_argument('--name', default='', help='identifier for directory')
parser.add_argument('--data_root', default='./data/Moving_MNIST',
help='root directory for data')
parser.add_argument('--model', default='MoDeRNN', help='model type')
parser.add_argument('--optimizer', default='adam', help='optimizer to train with')
parser.add_argument('--resume', type=str, default=None, help='put the path to resuming file if needed')
parser.add_argument('--total_epoch', type=int, default=100, help='number of epochs to train for')
parser.add_argument('--criterion', type=str, default='MSE&L1', help='loss function')
parser.add_argument('--seed', default=1, type=int, help='manual seed')
parser.add_argument('--epoch_size', type=int, default=10, help='epoch size')
parser.add_argument('--load_size', type=int, default=720, help='the size of the image short edge be loaded in dataset')
parser.add_argument('--image_width', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--image_height', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--patch_size', type=int, default=4,
help='the patch size, the input size will be image_width/patch_size')
parser.add_argument('--dataset', default='mmnist',
help='dataset to train with')
parser.add_argument('--input_nc', default=1, type=int)
parser.add_argument('--output_nc', default=1, type=int)
parser.add_argument('--seq_len', type=int, default=10, help='number of prior frames in a sequence')
parser.add_argument('--pre_len', type=int, default=10, help='number of frames be predicted')
parser.add_argument('--eval_len', type=int, default=10, help='number of frames to predict during eval')
parser.add_argument('--rnn_size', type=int, default=64, help='dimensionality of hidden layer')
parser.add_argument('--rnn_nlayer', type=int, default=4, help='number of convrnn layers')
parser.add_argument('--filter_size', type=int, default=5, help='filter size of the convrnn')
parser.add_argument('--data_threads', type=int, default=1, help='number of data loading threads')
parser.add_argument('--num_digits', type=int, default=2, help='number of digits for moving mnist')
parser.add_argument('--lr_policy', type=str, default='cosine', help='lr_policy')
opt = parser.parse_args()
opt.name = 'model=%s-patch_size=%d-batch_size=%d-rnn_size=%d-nlayer=%d-filter_size=%d-lr=%f' % (
opt.model, opt.patch_size, opt.batch_size, opt.rnn_size, opt.rnn_nlayer, opt.filter_size, opt.lr)
# now_time = datetime.now().strftime('%b%d_%H-%M-%S')
opt.log_dir = '%s/%s/%s' % (opt.log_dir, opt.dataset, opt.name) # now_time)
if not os.path.exists('%s/pred/' % (opt.log_dir)):
os.makedirs('%s/pred/' % (opt.log_dir))
if not os.path.exists('%s/results/' % (opt.log_dir)):
os.makedirs('%s/results/' % (opt.log_dir))
if not os.path.exists('%s/runs/' % (opt.log_dir)):
os.makedirs('%s/runs/' % (opt.log_dir))
print("Random Seed: ", opt.seed)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
print(opt)
trainer = FPTrainer(opt)
# --------- training loop ------------------------------------
if __name__ == '__main__':
for epoch in range(trainer.start_epoch, opt.total_epoch):
trainer.train_epoch(epoch)
if epoch > opt.total_epoch - 10 or epoch % 50 == 0:
with torch.no_grad():
trainer.test(epoch)
trainer.finish()