-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
172 lines (131 loc) · 5.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import cv2
from skimage.measure import compare_psnr as psnr_metric
from skimage.measure import compare_ssim as ssim_metric
from torch.autograd import Variable
from torch.optim import lr_scheduler
def load_dataset(opt):
if opt.dataset == 'mmnist':
from data.movingmnist import MovingMNIST
train_data = MovingMNIST(opt.data_root, True)
valid_data = MovingMNIST(opt.data_root, False)
test_data = MovingMNIST(opt.data_root, False)
else:
raise NameError('Got unsupported dataset: {}'.format(opt.dataset))
return train_data, valid_data, test_data
def sequence_input(seq, dtype):
return [Variable(x.type(dtype), requires_grad=True) for x in seq]
def normalize_data(opt, dtype, sequence):
if opt.dataset == 'mmnist':
sequence.transpose_(0, 1) # T x B x C x H x W
return sequence_input(sequence, dtype)
else:
raise NameError('Got unsupported dataset: {}'.format(opt.dataset))
def mse_metric(x1, x2):
mse = np.square(x1 - x2).sum()
return mse
def mae_metric(x1, x2):
mae = np.sum(np.absolute(x1 - x2))
return mae
def sharp_metric(x):
x = np.transpose(x, [1, 2, 0])
x = np.uint8(x * 255)
sharp = np.max(cv2.convertScaleAbs(cv2.Laplacian(x, 3)))
return sharp
def eval_seq(gt, pred):
T = len(gt)
bs = gt[0].shape[0]
for t in range(T):
pred[t] = np.maximum(pred[t], 0)
pred[t] = np.minimum(pred[t], 1)
ssim = np.zeros((bs, T))
psnr = np.zeros((bs, T))
mse = np.zeros((bs, T))
mae = np.zeros((bs, T))
sharp = np.zeros((bs, T))
for i in range(bs):
for t in range(T):
mse[i, t] = mse_metric(gt[t][i], pred[t][i])
mae[i, t] = mae_metric(gt[t][i], pred[t][i])
sharp[i, t] = sharp_metric(pred[t][i])
x = np.uint8(gt[t][i] * 255)
gx = np.uint8(pred[t][i] * 255)
for c in range(gt[t][i].shape[0]):
ssim[i, t] += ssim_metric(x[c], gx[c])
psnr[i, t] += psnr_metric(x[c], gx[c])
ssim[i, t] /= gt[t][i].shape[0]
psnr[i, t] /= gt[t][i].shape[0]
return np.sum(mse, axis=0), np.sum(mae, axis=0), np.sum(ssim, axis=0), np.sum(psnr, axis=0), np.sum(sharp, axis=0)
def batch_mae_frame_float(gen_frames, gt_frames):
# [batch, width, height]
x = np.float32(gen_frames)
y = np.float32(gt_frames)
mae = np.sum(np.absolute(x - y), axis=(1, 2), dtype=np.float32)
return np.sum(mae, axis=0)
def batch_psnr(gen_frames, gt_frames):
x = np.int32(gen_frames)
y = np.int32(gt_frames)
num_pixels = float(np.size(gen_frames[0]))
mse = np.sum((x - y) ** 2, axis=(1, 2), dtype=np.float32) / num_pixels
psnr = 20 * np.log10(255) - 10 * np.log10(mse)
return np.sum(psnr, axis=0)
def eval_seq_batch(gt, pred):
T = len(gt)
bs = gt[0].shape[0]
ssim = np.zeros(T)
psnr = np.zeros(T)
mse = np.zeros(T)
mae = np.zeros(T)
sharp = np.zeros(T)
for t in range(T):
x = gt[t][:, 0, :, :]
gx = pred[t][:, 0, :, :]
gx = np.maximum(gx, 0)
gx = np.minimum(gx, 1)
mae[t] = batch_mae_frame_float(gx, x)
mse_t = np.square(x - gx).sum()
mse[t] = mse_t
real_frm = np.uint8(x * 255)
pred_frm = np.uint8(gx * 255)
psnr[t] = batch_psnr(pred_frm, real_frm)
for b in range(bs):
sharp[t] += np.max(
cv2.convertScaleAbs(cv2.Laplacian(pred_frm[b], 3)))
score, _ = ssim_metric(pred_frm[b], real_frm[b], full=True)
ssim[t] += score
return mse, mae, ssim, psnr, sharp
def reshape_patch(images, patch_size):
bs = images.size(0)
nc = images.size(1)
height = images.size(2)
weight = images.size(3)
x = images.reshape(bs, nc, int(height / patch_size), patch_size, int(weight / patch_size), patch_size)
x = x.transpose(2, 5)
x = x.transpose(4, 5)
x = x.reshape(bs, nc * patch_size * patch_size, int(height / patch_size), int(weight / patch_size))
return x
def reshape_patch_back(images, patch_size):
bs = images.size(0)
nc = int(images.size(1) / (patch_size * patch_size))
height = images.size(2)
weight = images.size(3)
x = images.reshape(bs, nc, patch_size, patch_size, height, weight)
x = x.transpose(4, 5)
x = x.transpose(2, 5)
x = x.reshape(bs, nc, height * patch_size, weight * patch_size)
return x
def get_scheduler(optimizer, opt, t_max):
if opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=t_max, eta_min=1e-6)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def print_network(net, name, verbose=True):
print('---------- Networks initialized -------------')
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')