-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglcm_features.py
295 lines (243 loc) · 10.6 KB
/
glcm_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
This module implements efficient algorithm for Haralick Texture Features (TF based on GLCM matrix) computation
with the use of a C function built in python code which is executed with scipy.weave
calculate_glcm_features - function for TF computation.
save_haralick_features - function that saves calculated features as numpy binary data, preview
of features and full resolution image if needed.
@author: Dmitrii Murashkin ([email protected])
"""
import numpy as np
try:
from scipy import weave
except:
import weave
from scipy.misc import imresize
from os import path, mkdir
def calculate_glcm_features(img, window_size=9, n_levels=16, d=1, nthreads=1, result=None, step=1):
"""
The function calculates GLCM texture features for a given image.
It returns a np.array of 14 features and the image inself in the following order:
ASM, entropy, contrast, homogenity, MAX, correlation, cluster tendency, image itself.
The features mentioned can have 'a bit' different definitions in literature.
4 GLC Matrixes are calculated, each feature then is computed for sum of the Matrixes.
input:
img - image, must be a 2D matrix of int8 values;
window_size must be odd;
n_levels - amount of brightness levels (max(img) must be less than n_levels);
d - displacement;
nthreads - number of threads for openMP to use, must be integer;
result - buffer for result, should be 3d array size of (8, X, Y), where X, Y = img.shape
tp - 'mean' by default and this is the only option since 'max' increased noise,
'sqrt' is not very usefull // tp is not used anymore!
output:
normalized values, np.float32 array of (14, img.X, img.Y) size
"""
""" Check that maximal brightness is less than number of gray levels """
if img.max() > n_levels:
print (img.max() > n_levels)
return 0
X, Y = img.shape
ws = window_size / 2
Xx, Yy = img[::step, ::step].shape
size = Xx * Yy
ret = False
if result is None:
result = np.zeros((14, Xx, Yy), np.float32)
ret = True
code_C_mean = \
"""
#include <math.h>
#include <stdio.h>
#include <string.h>
double ch[13];
double tmp[6];
double glcm[n_levels][n_levels];
double pxy[n_levels*2], px_y[n_levels], px[n_levels];
double p;
double R = 0;
unsigned int ind;
int k, l;
int i, j, is, js;
uint16_t glcm_i[n_levels][n_levels];
const int dY = d * Y;
int weight[ws*2+1][ws*2+1];
// Set kernel weights
for (k = 0; k <= 2*ws; k++)
for (l = 0; l <= 2*ws; l++)
{
weight[k][l] = fmin(ws - abs(k - ws), ws - abs(l - ws)) + 1;
//weight[k][l] = 1;
R += weight[k][l];
}
omp_set_num_threads(nthreads);
#pragma omp parallel shared(img, weight, R, step) private(i, j, is, js, glcm, k, l, ind, ch, p, glcm_i, pxy, px_y, px, tmp)
#pragma omp for
for (i = ws; i < X - ws; i += step)
{
for (j = ws; j < Y - ws; j += step)
{
// set GLCM and features value to be zero
memset(glcm_i, 0, sizeof(glcm_i));
memset(ch, 0, sizeof(ch));
memset(pxy, 0, sizeof(pxy));
memset(px_y, 0, sizeof(px_y));
memset(px, 0, sizeof(px));
memset(tmp, 0, sizeof(tmp));
// calculate GLCM
// main part of sliding window
for (k = -ws; k < ws; k++)
{
for (l = -ws; l < ws; l++)
{
ind = (i+k) * Y + (j+l);
glcm_i[img[ind]][img[ind + dY]] += weight[k+ws][l+ws]; // horisontal-up
glcm_i[img[ind]][img[ind + d]] += weight[k+ws][l+ws]; // vertical-down
glcm_i[img[ind]][img[ind + dY + d]] += weight[k+ws][l+ws]; // diagonal down-right
glcm_i[img[ind+1]][img[ind + dY]] += weight[k+ws][l+ws];// diagonal down-left
}
glcm_i[img[(i+ws)*Y + (j+k)]][img[(i+ws)*Y + (j+k+1)]]++;
glcm_i[img[(i+k)*Y + (j+ws)]][img[(i+k+1)*Y + (j+ws)]]++;
}
// Make GLCM symmetrical
for (k = 0; k < n_levels; k++)
for (l = 0; l <= k; l++)
{
glcm_i[k][l] += glcm_i[l][k];
}
// Normalize glcm - summ of values in the matrix should be equal to 1
// Calculate pxy, px_y, px
// Calculate standard deviation for px (tmp[1] is variance, tmp[2] is std)
for (k = 0; k < n_levels; k++)
{
for (l = 0; l < k; l++)
{
glcm[k][l] = glcm_i[k][l] / R;
pxy[k + l] += 2 * glcm[k][l];
px_y[k - l] += 2 * glcm[k][l];
px[k] += glcm[k][l];
tmp[0] += px[k] * k;
}
glcm[k][k] = glcm_i[k][k] / R;
pxy[k + k] += glcm[k][k];
px_y[0] += glcm[k][k];
px[k] += glcm[k][k];
tmp[0] += px[k] * k;
}
for (k = 0; k < n_levels; k++)
{
tmp[1] += (tmp[0] - px[k]) * (tmp[0] - px[k]);
}
tmp[2] = sqrt(tmp[1]);
//calculate characteristics
for (k = 0; k < n_levels; k++)
{
for (l = 0; l < k; l++)
{
p = glcm[k][l];
if (p)
{
// ASM
ch[0] += 2 * p * p;
// Entropy
ch[1] += 2 * p * log10(p + 1.);
// Contrast
ch[2] += 2 * (l-k)*(l-k) * p;
// Sum of squares: Variance
ch[3] += 2 * p * (k-tmp[0])*(k-tmp[0]);
// Inverse Difference Moment
ch[5] += 2 * p / (1 + (k - l) * (k - l));
// Correlation
ch[6] += 2 * (k*l*p - tmp[0]*tmp[0]) / (tmp[2]);
// Cluster Tendency
ch[7] += 2 * p * ((k - tmp[0]) + (l - tmp[0]));
// HXY1 (tmp[3]) and HXY2 (tmp[4])
tmp[3] += 2 * p * log10(px[k] * px[l] + 1.);
tmp[4] += px[k] * px[l] * log10(px[k] * px[l] + 1.);
}
}
p = glcm[k][k];
if (p)
{
// ASM
ch[0] += p * p;
// Entropy
ch[1] += p * log10(p + 1.);
// Contrast
ch[2] += (l-k)*(l-k) * p;
// Sum of squares: Variance
ch[3] += p * (k-tmp[0])*(k-tmp[0]);
// Inverse Difference Moment (Homogeneity)
ch[5] += p / (1 + (k - l) * (k - l));
// Correlation
ch[6] += (k*l*p - tmp[0]*tmp[0]) / (tmp[2]);
// Cluster Tendency
ch[7] += p * (k - tmp[0]) * (k - tmp[0]);
// HXY1 (tmp[3]) and HXY2 (tmp[4])
tmp[3] += p * log10(px[k] * px[k] + 1.);
tmp[4] += px[k] * px[k] * log10(px[k] * px[k] + 1.);
}
}
for (k = 1; k < 2*n_levels - 1; k++)
{
// Sum Average == Cluster Tendency that is p * ((k - mu) + (l - mu))
ch[8] += k * pxy[k];
// Sum Variance
ch[9] += (k - ch[8])*(k - ch[8]) * pxy[k];
// Sum entropy
ch[10] += pxy[k] * log10(pxy[k] + 1.);
}
for (k = 0; k < n_levels; k++)
{
// Difference variance
ch[11] += tmp[0] - px_y[k];
//Difference entropy
ch[12] += px_y[k] * log10(px_y[k] + 1.);
// Probability of a run of length
//ch[7] += (px[k] - glcm[k][k])*(px[k] - glcm[k][k]) * pow(glcm[k][k], 2) / (pow(px[k], 3)+0.001);
// px entroty (tmp[5])
tmp[5] += px[k] * log10(px[k] + 1.);
}
// Information measure of correlation (f12 from the paper by Haralick)
ch[4] = (-ch[1] - tmp[3]) / (tmp[5] + 1.);
is = i / step;
js = j / step;
result[is*Yy + js] = ch[0];
result[is*Yy + js + size] = ch[1];
result[is*Yy + js + 2*size] = ch[2];
result[is*Yy + js + 3*size] = ch[3];
result[is*Yy + js + 4*size] = ch[4];
result[is*Yy + js + 5*size] = ch[5];
result[is*Yy + js + 6*size] = ch[6];
result[is*Yy + js + 7*size] = ch[12];
result[is*Yy + js + 8*size] = ch[8];
result[is*Yy + js + 9*size] = ch[9];
result[is*Yy + js + 10*size] = ch[10];
result[is*Yy + js + 11*size] = ch[11];
}
}
"""
weave.inline(code_C_mean, ['img', 'X', 'Y', 'n_levels', 'result', 'ws', 'd', 'nthreads', 'step', 'size', 'Yy'],
extra_compile_args=['-O3 -fopenmp'], compiler='gcc',
libraries=['gomp'], headers=['<omp.h>'])
result[-1, :, :] = img[::step, ::step]
if ret:
return result.astype(np.float32)
return True
def save_haralick_features(data, directory, full_image=False, preview=0.2):
"""
Save Haralick texture features given by 'data' in numpy binary format in 'directory',
Save image preview (5 times smaller) in png format. Do not save it if 'preview' is False
If full_image is True, save full image in png format
"""
from matplotlib.pyplot import imsave
if not path.isdir(directory):
mkdir(directory)
for n, i in enumerate(data):
np.save(directory + 'f{0}'.format(n), i.astype(np.float32))
if full_image:
imsave(directory + 'full_f{0}.png'.format(n), i, format='png')
if preview:
imsave(directory + 'preview_f{0}.png'.format(n), imresize(i, size=preview),
format='png', cmap='jet')
if __name__ == '__main__':
pass