Skip to content

Latest commit

 

History

History
209 lines (170 loc) · 6.75 KB

quickstart.rst

File metadata and controls

209 lines (170 loc) · 6.75 KB
.. only:: doctest

   >>> import shutil
   >>> shutil.rmtree('data', ignore_errors=True)
   >>>
   >>> import numpy as np
   >>> np.random.seed(0)

Quickstart

Welcome to the Zarr-Python Quickstart guide! This page will help you get up and running with the Zarr library in Python to efficiently manage and analyze multi-dimensional arrays.

Zarr is a powerful library for storage of n-dimensional arrays, supporting chunking, compression, and various backends, making it a versatile choice for scientific and large-scale data.

Installation

Zarr requires Python 3.11 or higher. You can install it via pip:

pip install zarr

or conda:

conda install --channel conda-forge zarr

Creating an Array

To get started, you can create a simple Zarr array:

>>> import zarr
>>> import numpy as np
>>>
>>> # Create a 2D Zarr array
>>> z = zarr.create_array(
...    store="data/example-1.zarr",
...    shape=(100, 100),
...    chunks=(10, 10),
...    dtype="f4"
... )
>>>
>>> # Assign data to the array
>>> z[:, :] = np.random.random((100, 100))
>>> z.info
Type               : Array
Zarr format        : 3
Data type          : DataType.float32
Shape              : (100, 100)
Chunk shape        : (10, 10)
Order              : C
Read-only          : False
Store type         : LocalStore
Codecs             : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
No. bytes          : 40000 (39.1K)

Here, we created a 2D array of shape (100, 100), chunked into blocks of (10, 10), and filled it with random floating-point data. This array was written to a LocalStore in the data/example-1.zarr directory.

Compression and Filters

Zarr supports data compression and filters. For example, to use Blosc compression:

>>> z = zarr.create_array(
...    "data/example-3.zarr",
...    mode="w", shape=(100, 100),
...    chunks=(10, 10), dtype="f4",
...    compressors=zarr.codecs.BloscCodec(cname="zstd", clevel=3, shuffle=zarr.codecs.BloscShuffle.shuffle)
... )
>>> z[:, :] = np.random.random((100, 100))
>>>
>>> z.info
Type               : Array
Zarr format        : 3
Data type          : DataType.float32
Shape              : (100, 100)
Chunk shape        : (10, 10)
Order              : C
Read-only          : False
Store type         : LocalStore
Codecs             : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
No. bytes          : 40000 (39.1K)

This compresses the data using the Zstandard codec with shuffle enabled for better compression.

Hierarchical Groups

Zarr allows you to create hierarchical groups, similar to directories:

>>> # Create nested groups and add arrays
>>> root = zarr.group("data/example-2.zarr")
>>> foo = root.create_group(name="foo")
>>> bar = root.create_array(
...     name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
... )
>>> spam = foo.create_array(name="spam", shape=(10,), dtype="i4")
>>>
>>> # Assign values
>>> bar[:, :] = np.random.random((100, 10))
>>> spam[:] = np.arange(10)
>>>
>>> # print the hierarchy
>>> root.tree()
/
├── bar (100, 10) float32
└── foo
    └── spam (10,) int32
<BLANKLINE>

This creates a group with two datasets: foo and bar.

Batch Hierarchy Creation

Zarr provides tools for creating a collection of arrays and groups with a single function call. Suppose we want to copy existing groups and arrays into a new storage backend:

>>> # Create nested groups and add arrays
>>> root = zarr.group("data/example-3.zarr", attributes={'name': 'root'})
>>> foo = root.create_group(name="foo")
>>> bar = root.create_array(
...     name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
... )
>>> nodes = {'': root.metadata} | {k: v.metadata for k,v in root.members()}
>>> print(nodes)
>>> from zarr.storage import MemoryStore
>>> new_nodes = dict(zarr.create_hierarchy(store=MemoryStore(), nodes=nodes))
>>> new_root = new_nodes['']
>>> assert new_root.attrs == root.attrs

Note that :func:`zarr.create_hierarchy` will only initialize arrays and groups -- copying array data must be done in a separate step.

Persistent Storage

Zarr supports persistent storage to disk or cloud-compatible backends. While examples above utilized a :class:`zarr.storage.LocalStore`, a number of other storage options are available.

Zarr integrates seamlessly with cloud object storage such as Amazon S3 and Google Cloud Storage using external libraries like s3fs or gcsfs:

>>> import s3fs # doctest: +SKIP
>>>
>>> z = zarr.create_array("s3://example-bucket/foo", mode="w", shape=(100, 100), chunks=(10, 10), dtype="f4") # doctest: +SKIP
>>> z[:, :] = np.random.random((100, 100)) # doctest: +SKIP

A single-file store can also be created using the the :class:`zarr.storage.ZipStore`:

>>> # Store the array in a ZIP file
>>> store = zarr.storage.ZipStore("data/example-3.zip", mode='w')
>>>
>>> z = zarr.create_array(
...     store=store,
...     mode="w",
...     shape=(100, 100),
...     chunks=(10, 10),
...     dtype="f4"
... )
>>>
>>> # write to the array
>>> z[:, :] = np.random.random((100, 100))
>>>
>>> # the ZipStore must be explicitly closed
>>> store.close()

To open an existing array from a ZIP file:

>>> # Open the ZipStore in read-only mode
>>> store = zarr.storage.ZipStore("data/example-3.zip", read_only=True)
>>>
>>> z = zarr.open_array(store, mode='r')
>>>
>>> # read the data as a NumPy Array
>>> z[:]
array([[0.66734236, 0.15667458, 0.98720884, ..., 0.36229587, 0.67443246,
        0.34315267],
    [0.65787303, 0.9544212 , 0.4830079 , ..., 0.33097172, 0.60423803,
        0.45621237],
    [0.27632037, 0.9947008 , 0.42434934, ..., 0.94860053, 0.6226942 ,
        0.6386924 ],
    ...,
    [0.12854576, 0.934397  , 0.19524333, ..., 0.11838563, 0.4967675 ,
        0.43074256],
    [0.82029045, 0.4671437 , 0.8090906 , ..., 0.7814118 , 0.42650765,
        0.95929915],
    [0.4335856 , 0.7565437 , 0.7828931 , ..., 0.48119593, 0.66220033,
        0.6652362 ]], shape=(100, 100), dtype=float32)

Read more about Zarr's storage options in the :ref:`User Guide <user-guide-storage>`.

Next Steps

Now that you're familiar with the basics, explore the following resources: