|
11 | 11 |
|
12 | 12 | > 验证二叉搜索树
|
13 | 13 |
|
14 |
| -```go |
15 |
| -/** |
16 |
| - * Definition for a binary tree node. |
17 |
| - * type TreeNode struct { |
18 |
| - * Val int |
19 |
| - * Left *TreeNode |
20 |
| - * Right *TreeNode |
21 |
| - * } |
22 |
| - */ |
23 |
| -func isValidBST(root *TreeNode) bool { |
24 |
| - return dfs(root).valid |
25 |
| -} |
26 |
| -type ResultType struct{ |
27 |
| - max int |
28 |
| - min int |
29 |
| - valid bool |
30 |
| -} |
31 |
| -func dfs(root *TreeNode)(result ResultType){ |
32 |
| - if root==nil{ |
33 |
| - result.max=-1<<63 |
34 |
| - result.min=1<<63-1 |
35 |
| - result.valid=true |
36 |
| - return |
37 |
| - } |
| 14 | +```c++ |
| 15 | +class Solution { |
| 16 | +public: |
| 17 | + struct Result { |
| 18 | + TreeNode *maxNode; |
| 19 | + TreeNode *minNode; |
| 20 | + bool isValidate; |
38 | 21 |
|
39 |
| - left:=dfs(root.Left) |
40 |
| - right:=dfs(root.Right) |
| 22 | + Result(bool validate = true, TreeNode *max = nullptr, TreeNode *min = nullptr) |
| 23 | + : isValidate(validate), maxNode(max), minNode(min) { |
41 | 24 |
|
42 |
| - // 1、满足左边最大值<root<右边最小值 && 左右两边valid |
43 |
| - if root.Val>left.max && root.Val<right.min && left.valid && right.valid { |
44 |
| - result.valid=true |
45 |
| - } |
46 |
| - // 2、更新当前节点的最大最小值 |
47 |
| - result.max=Max(Max(left.max,right.max),root.Val) |
48 |
| - result.min=Min(Min(left.min,right.min),root.Val) |
49 |
| - return |
50 |
| -} |
51 |
| -func Max(a,b int)int{ |
52 |
| - if a>b{ |
53 |
| - return a |
54 |
| - } |
55 |
| - return b |
56 |
| -} |
57 |
| -func Min(a,b int)int{ |
58 |
| - if a>b{ |
59 |
| - return b |
| 25 | + } |
| 26 | + }; |
| 27 | + bool isValidBST(TreeNode *root) { |
| 28 | + if (!root) { |
| 29 | + return true; |
| 30 | + } |
| 31 | + return helper(root).isValidate; |
60 | 32 | }
|
61 |
| - return a |
62 |
| -} |
63 | 33 |
|
| 34 | + Result helper(TreeNode *root) { |
| 35 | + if (!root) { |
| 36 | + return {}; |
| 37 | + } |
| 38 | + auto left = helper(root->left); |
| 39 | + auto right = helper(root->right); |
| 40 | + if (!(left.isValidate && right.isValidate)) { |
| 41 | + return {false}; |
| 42 | + } |
| 43 | + if (left.maxNode && left.maxNode->val >= root->val) { |
| 44 | + return {false}; |
| 45 | + } |
| 46 | + if (right.minNode && right.minNode->val <= root->val) { |
| 47 | + return {false}; |
| 48 | + } |
| 49 | + return { |
| 50 | + true, |
| 51 | + right.maxNode ? right.maxNode : root, |
| 52 | + left.minNode ? left.minNode : root, |
| 53 | + }; |
| 54 | + } |
| 55 | +}; |
64 | 56 | ```
|
65 | 57 |
|
66 | 58 | [insert-into-a-binary-search-tree](https://leetcode-cn.com/problems/insert-into-a-binary-search-tree/)
|
67 | 59 |
|
68 | 60 | > 给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 保证原始二叉搜索树中不存在新值。
|
69 | 61 |
|
70 |
| -```go |
71 |
| -func insertIntoBST(root *TreeNode, val int) *TreeNode { |
72 |
| - if root==nil{ |
73 |
| - return &TreeNode{Val:val} |
| 62 | +```c++ |
| 63 | +TreeNode *insertIntoBST(TreeNode *root, int val) { |
| 64 | + if (root == nullptr) { |
| 65 | + return new TreeNode(val); |
74 | 66 | }
|
75 |
| - if root.Val<val{ |
76 |
| - root.Right=insertIntoBST(root.Right,val) |
77 |
| - }else{ |
78 |
| - root.Left=insertIntoBST(root.Left,val) |
| 67 | + if (root->val > val) { |
| 68 | + root->left = insertIntoBST(root->left, val); |
| 69 | + } else { |
| 70 | + root->right = insertIntoBST(root->right, val); |
79 | 71 | }
|
80 |
| - return root |
| 72 | + return root; |
81 | 73 | }
|
82 | 74 | ```
|
83 | 75 |
|
84 | 76 | [delete-node-in-a-bst](https://leetcode-cn.com/problems/delete-node-in-a-bst/)
|
85 | 77 |
|
86 | 78 | > 给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
|
87 | 79 |
|
88 |
| -```go |
89 |
| -/** |
90 |
| - * Definition for a binary tree node. |
91 |
| - * type TreeNode struct { |
92 |
| - * Val int |
93 |
| - * Left *TreeNode |
94 |
| - * Right *TreeNode |
95 |
| - * } |
96 |
| - */ |
97 |
| -func deleteNode(root *TreeNode, key int) *TreeNode { |
98 |
| - // 删除节点分为三种情况: |
99 |
| - // 1、只有左节点 替换为右 |
100 |
| - // 2、只有右节点 替换为左 |
101 |
| - // 3、有左右子节点 左子节点连接到右边最左节点即可 |
102 |
| - if root ==nil{ |
103 |
| - return root |
| 80 | +```c++ |
| 81 | +// 注意二叉搜索树的概念! |
| 82 | +// 如果当前节点是其父节点的左子节点,则当前节点底下任何一个节点都要比该父节点小 |
| 83 | +// 反之亦然 |
| 84 | +TreeNode* deleteNode(TreeNode* root, int key) { |
| 85 | + if (root == nullptr) { |
| 86 | + return root; |
104 | 87 | }
|
105 |
| - if root.Val<key{ |
106 |
| - root.Right=deleteNode(root.Right,key) |
107 |
| - }else if root.Val>key{ |
108 |
| - root.Left=deleteNode(root.Left,key) |
109 |
| - }else if root.Val==key{ |
110 |
| - if root.Left==nil{ |
111 |
| - return root.Right |
112 |
| - }else if root.Right==nil{ |
113 |
| - return root.Left |
114 |
| - }else{ |
115 |
| - cur:=root.Right |
116 |
| - // 一直向左找到最后一个左节点即可 |
117 |
| - for cur.Left!=nil{ |
118 |
| - cur=cur.Left |
119 |
| - } |
120 |
| - cur.Left=root.Left |
121 |
| - return root.Right |
122 |
| - } |
| 88 | + if (root->val < key) { |
| 89 | + root->right = deleteNode(root->right, key); |
| 90 | + return root; |
| 91 | + } |
| 92 | + if (root->val > key) { |
| 93 | + root->left = deleteNode(root->left, key); |
| 94 | + return root; |
| 95 | + } |
| 96 | + // 每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。 |
| 97 | + // 所以压根不需要考虑啥当前节点的父节点,必定当前节点的左右子树! |
| 98 | + if (root->left == nullptr) { |
| 99 | + return root->right; |
123 | 100 | }
|
124 |
| - return root |
| 101 | + if (root->right == nullptr) { |
| 102 | + return root->left; |
| 103 | + } |
| 104 | + auto iter = root->right; |
| 105 | + while (iter->left != nullptr) { |
| 106 | + iter = iter->left; |
| 107 | + } |
| 108 | + iter->left = root->left; |
| 109 | + return root->right; |
125 | 110 | }
|
126 | 111 | ```
|
127 | 112 |
|
128 | 113 | [balanced-binary-tree](https://leetcode-cn.com/problems/balanced-binary-tree/)
|
129 | 114 |
|
130 | 115 | > 给定一个二叉树,判断它是否是高度平衡的二叉树。
|
131 | 116 |
|
132 |
| -```go |
| 117 | +```c++ |
| 118 | +struct ResultType { |
| 119 | + int height; |
| 120 | + bool valid; |
| 121 | +}; |
| 122 | +
|
| 123 | +bool isBalanced(TreeNode *root) { |
| 124 | + return dfs(root).valid; |
| 125 | +} |
| 126 | +
|
133 | 127 | type ResultType struct{
|
134 | 128 | height int
|
135 | 129 | valid bool
|
|
0 commit comments