-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
63 lines (48 loc) · 2.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import argparse
from DA2Lite.trainer.classification import Classification
from DA2Lite.core.config import CfgUtil
from DA2Lite.core.log import setup_logger, get_logger
from DA2Lite.core.compress import Compressor
from DA2Lite.converter.converter import Converter
logger = get_logger(__name__)
def get_parser():
parser = argparse.ArgumentParser(description="NET2net for builtin configs")
parser.add_argument(
"--train_config_file",
default="configs/train/cifar10/cifar10_vgg16_bn.yaml",
metavar="FILE",
help="path to train config file",
)
parser.add_argument(
"--compress_config_file",
default="configs/compress/eagleeye_fskd.yaml",
metavar="FILE",
help="path to compress config file",
)
return parser
if __name__ == '__main__':
save_dir = setup_logger()
args = get_parser().parse_args()
cfg_util = CfgUtil(args, save_dir)
device = cfg_util.get_device()
logger.info(f'Loading {cfg_util.cfg.DATASET.NAME} dataset ...\n')
train_loader, test_loader = cfg_util.load_dataset()
model = cfg_util.load_model()
trainer = Classification(cfg_util=cfg_util,
train_cfg=cfg_util.cfg.TRAIN,
prefix='origin',
model=model,
train_loader=train_loader,
test_loader=test_loader,
device=device)
trained_model, origin_summary = trainer.build()
DA2lite = Compressor(cfg_util=cfg_util,
model=model,
train_loader=train_loader,
test_loader=test_loader,
origin_summary=origin_summary,
device=device)
DA2lite.build()
converter = Converter(model, DA2lite.trainer.save_path[:-3] + "_script.pt\n", (16, 3, 32, 32)) # TODO 2022.03.14 config 파일에 IMAGE_SHAPE 이용하도록 변경 해야함
converter.to_torchscript()