-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample.Rout
189 lines (178 loc) · 8.71 KB
/
example.Rout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## demonstrate models for proximal and delayed treatment effects using model
> ## fitting functions from the standard 'stats' R package ('glm' and 'lm')
>
> ## load functions needed to generate some data
> system("R CMD SHLIB rsnmm.c")
make: Nothing to be done for `all'.
> dyn.load(if (Sys.info()["sysname"] == "Windows") "rsnmm.dll" else "rsnmm.so")
> library("zoo")
Attaching package: ‘zoo’
The following objects are masked from ‘package:base’:
as.Date, as.Date.numeric
> source("xzoo.R")
> source("rsnmm.R")
>
> set.seed(0)
> d <- rsnmm(n = 50, tmax = 200, beta1 = c(-0.1, 0, 0, 0),
+ coef.avail = c(log(9), 0, 0, 0))
>
> ## define extra variables, using functions from xzoo.R:
> ## - variation among current and up to the past 2 states
> d$varstate <- with(d, roll(id, time, state, width = 3, FUN = var))
> ## - variation up to the past 3 states
> d$lag1varstate <- with(d, delay(id, time, varstate))
>
> ## nb: for a given row in 'd'...
> ## 'time' indexes the treatment occasion
> ## 'a' is the corresponding treatment indicator
> ## 'y' is the corresponding proximal response
> ## (this is the same format often used for longitudinal data)
> d <- subset(d, time > 0)
> head(d)
id time ty tmod tavail tstate base state a y err avail
2 1 1 0 0 0 0 0.6522909 -1 1 -1.6234748 -0.5474850 1
3 1 2 0 0 0 0 0.6522909 -1 0 0.5373703 1.3391751 1
4 1 3 0 0 0 0 0.6522909 1 0 1.2013483 0.3845501 1
5 1 4 0 0 0 0 0.6522909 -1 0 -0.3738786 0.2331138 1
6 1 5 0 0 0 0 0.6522909 -1 1 -0.7032743 0.3417129 1
7 1 6 0 0 0 0 0.6522909 1 0 1.4097941 0.6787916 1
prob a.center state.center avail.center one lag1y lag2y
2 0.3100255 0.6899745 -1 0.1 1 0.0000000 NA
3 0.1679816 -0.1679816 -1 0.1 1 -1.6234748 0.0000000
4 0.6899745 -0.6899745 1 0.1 1 0.5373703 -1.6234748
5 0.3100255 -0.3100255 -1 0.1 1 1.2013483 0.5373703
6 0.3100255 0.6899745 -1 0.1 1 -0.3738786 1.2013483
7 0.5000000 -0.5000000 1 0.1 1 -0.7032743 -0.3738786
lag1err lag1avail lag1avail.center lag2avail lag2avail.center lag1a lag2a
2 -0.3975580 0 0.0 NA NA 0 NA
3 -0.5474850 1 0.1 0 0.0 1 0
4 1.3391751 1 0.1 1 0.1 0 1
5 0.3845501 1 0.1 1 0.1 0 0
6 0.2331138 1 0.1 1 0.1 0 0
7 0.3417129 1 0.1 1 0.1 1 0
lag1prob lag2prob lag1a.center lag2a.center lag1tmod lag2tmod lag1state
2 0.0000000 NA 0.0000000 NA 0 NA 0
3 0.3100255 0.0000000 0.6899745 0.0000000 0 0 -1
4 0.1679816 0.3100255 -0.1679816 0.6899745 0 0 -1
5 0.6899745 0.1679816 -0.6899745 -0.1679816 0 0 1
6 0.3100255 0.6899745 -0.3100255 -0.6899745 0 0 -1
7 0.3100255 0.3100255 0.6899745 -0.3100255 0 0 -1
lag1state.center varstate lag1varstate
2 0 0.5000000 NA
3 -1 0.3333333 0.5000000
4 -1 1.3333333 0.3333333
5 1 1.3333333 1.3333333
6 -1 1.3333333 1.3333333
7 -1 1.3333333 1.3333333
>
> ## load functions needed for variance estimation
> source("xgeepack.R")
>
> ## --- treatment model (for the weight denominator)
>
> ## nb: in the 'data' argument, a data frame containing a subject identifer must
> ## be provided (although it need not be named 'id')
> system.time(fitpd <- glm(a ~ lag1a * state, weights = avail,
+ family = "binomial", data = d, subset = time > 3))
user system elapsed
0.031 0.008 0.038
>
> ## make 'glm' output more like that of 'geeglm'
> ## nb: this step is necessary for variance estimation later on
> fitpd <- glm2gee(fitpd, id)
> ## nb: consider only the coefficients, as this fit ignores repeated measures
> fitpd$coefficients
(Intercept) lag1a state lag1a:state
0.05350081 -0.83605510 0.79397362 0.03837450
>
> ## --- treatment probability model for weight numerator
>
> fitpn <- glm(a ~ 1, weights = avail, family = "binomial", data = d,
+ subset = time > 2)
> fitpn <- glm2gee(fitpn, id)
> fitpn$coefficients
(Intercept)
-0.2190782
>
> ## --- calculate weights
>
> d$pd <- d$pn <- NA
> d[names(fitpd$fitted.values), "pd"] <- fitpd$fitted.values
> d[names(fitpn$fitted.values), "pn"] <- fitpn$fitted.values
> d[d$avail == 0, c("pd", "pn")] <- 0
> d$w <- with(d, ifelse(avail == 0, 0, ifelse(a == 1, pn/pd, (1 - pn)/(1 - pd))))
> d$lag1pd <- with(d, delay(id, time, pd))
> d$lag1pn <- with(d, delay(id, time, pn))
> d$lag1w <- with(d, delay(id, time, w))
>
> ## --- estimate the proximal treatment effect
>
> fit1 <- lm(y ~ I(time%%2) + varstate + lag1a + state * I(a - pn),
+ weights = w, data = d, subset = time > 4)
> fit1 <- glm2gee(fit1, id)
>
> ## adjust variance estimates for estimation of treatment probabilities
> ## nb: - depending on the 'pn' and 'pd' arguments specified, 'vcov' can handle
> ## any combination of centering and weighting
> ## - here the 'label' argument is the term label corresponding to the main
> ## treatment effect
> fit1$vcov <- vcov(fit1, pn = fitpn, pd = fitpd, label = "I(a - pn)")
>
> ## summarize the model fit
> ## nb: 'estimate' can more generally consider linear combinations of regression
> ## coefficients, similar to the CONTRAST or ESTIMATE statements in SAS PROC
> ## GENMOD
> estimate(fit1)
Estimate 95% LCL 95% UCL SE Hotelling p-value
(Intercept) 0.000351 -0.080117 0.080820 0.039901 0.000 0.99301
I(time%%2) 0.033185 0.008242 0.058128 0.012368 7.199 0.01031 *
varstate -0.000929 -0.050823 0.048965 0.024741 0.001 0.97022
lag1a -0.086419 -0.149928 -0.022911 0.031492 7.531 0.00881 **
state 0.858799 0.832337 0.885260 0.013121 4283.958 < 1e-04 ***
I(a - pn) -0.198920 -0.256687 -0.141152 0.028645 48.224 < 1e-04 ***
state:I(a - pn) 0.188144 0.135870 0.240419 0.025921 52.685 < 1e-04 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> estimate(fit1, rbind("Proximal effect in state -1" = c(rep(0, 5), 1, -1),
+ "Proximal in state 1" = c(rep(0, 5), 1, 1)))
Estimate 95% LCL 95% UCL SE Hotelling p-value
Proximal effect in state -1 -0.3871 -0.4412 -0.3329 0.0432 80.198 <1e-04
Proximal in state 1 -0.0108 -0.0527 0.0311 0.0334 0.104 0.809
Proximal effect in state -1 ***
Proximal in state 1
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> ## --- estimate the delayed treatment effect
>
> fit2 <- lm(y ~ I(time%%2) + lag1state + lag1varstate + I(lag1a - lag1pn),
+ weights = lag1w, data = d, subset = time > 5)
> fit2 <- glm2gee(fit2, id)
> fit2$vcov <- vcov(fit2, pn = fitpn, pd = fitpd,
+ label = "I(lag1a - lag1pn)")
> estimate(fit2)
Estimate 95% LCL 95% UCL SE Hotelling p-value
(Intercept) 0.022410 -0.078882 0.123702 0.050291 0.199 0.6580
I(time%%2) -0.018921 -0.066729 0.028887 0.023736 0.635 0.4296
lag1state 0.038101 0.003842 0.072361 0.017010 5.017 0.0301 *
lag1varstate 0.021931 -0.038860 0.082722 0.030183 0.528 0.4712
I(lag1a - lag1pn) -0.075436 -0.151452 0.000579 0.037742 3.995 0.0517 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> proc.time()
user system elapsed
14.193 1.210 20.531