-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake-network.py
183 lines (159 loc) · 5.46 KB
/
make-network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Little script to draw the neutral network.
Adapted from https://gist.github.com/craffel/2d727968c3aaebd10359
"""
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import numpy as np
# Select the actor or critic network
actor = False
# Set general figure parameters
top = 0.99
if actor:
bottom = 0.05
else:
bottom = 0.14
left = 0.2
right = 0.99
h_spacing = (right - left) / 3
# Set the network shape
real = True
kernel = 3
if real:
cnn_alpha = 0.2
fc1_alpha = 0.5
n_signals = 6
n_days = 10
n_c_out = (n_days - kernel + 1) * n_signals
n_fc1 = 16
n_assets = 10
gap = 0.005
# Node radii
r_input = 0.004
r_c_out = (top - bottom - (n_assets - 1) * gap) / (n_c_out * n_assets * 3.0)
r_fc1 = r_c_out
r_output = 0.005
else:
cnn_alpha = 0.8
fc1_alpha = 0.8
n_days = 5
n_signals = 3
n_c_out = (n_days - kernel + 1) * n_signals
n_fc1 = 6
n_assets = 4
gap = 0.04
# Node radii
r_input = r_c_out = r_fc1 = r_output = 0.005
c_out_height = n_c_out * 3 * r_c_out - r_c_out
dy_asset = [a * (c_out_height + gap) + c_out_height / 2.0 + bottom for a in range(n_assets)]
# Setup the figure
fig = plt.figure(figsize=(20, 20), dpi=200)
ax = fig.gca()
ax.axis('off')
# Draw input
day_centers = np.empty([n_assets, n_signals, n_days, 2])
v_spacing = 3 * r_input
for a in range(n_assets):
layer_top = dy_asset[a] + v_spacing * (n_signals - 1.0) / 2.0
for s in range(n_signals):
# Draw nodes
for d in range(n_days):
x = v_spacing * (d + 1)
y = layer_top - s * v_spacing
day_centers[a, s, d] = [x, y]
circle = plt.Circle((x, y), radius=r_input, color='orange', ec='k', zorder=4)
ax.add_artist(circle)
# Draw lines
line = plt.Line2D([day_centers[a, s, 0, 0], day_centers[a, s, -1, 0]],
[day_centers[a, s, 0, 1], day_centers[a, s, -1, 1]], c='k', alpha=0.5, lw=2)
ax.add_artist(line)
# Draw CNN output nodes
cnn_centers = np.empty([n_assets, n_c_out, 2])
v_spacing = 3 * r_c_out
for a in range(n_assets):
layer_top = dy_asset[a] + v_spacing * (n_c_out - 1.0) / 2.0
for n in range(n_c_out):
x = left
y = layer_top - n * v_spacing
cnn_centers[a, n] = [x, y]
circle = plt.Circle((x, y), radius=r_c_out, color='blue', ec='k', zorder=4)
ax.add_artist(circle)
# Draw connection between input and CNN
patches = []
for a in range(n_assets):
points = np.vstack([day_centers[a, 0, -1, :], day_centers[a, -1, -1, :],
cnn_centers[a, -1, :], cnn_centers[a, 0, :]])
patches.append(Polygon(points))
ax.add_collection(PatchCollection(patches, alpha=0.2, fc='gold', ec='goldenrod'))
# Draw 1st fully connected layer
fc1_centers = np.empty([n_assets, n_fc1, 2])
v_spacing = 3 * r_fc1
for a in range(n_assets):
layer_top = dy_asset[a] + v_spacing * (n_fc1 - 1.0) / 2.0
for n in range(n_fc1):
x = left + h_spacing
y = layer_top - n * v_spacing
fc1_centers[a, n] = [x, y]
circle = plt.Circle((x, y), radius=r_fc1, color='cyan', ec='k', zorder=4)
ax.add_artist(circle)
# Draw action layer
action_centers = np.empty([n_assets, 2])
if not actor:
for n in range(n_assets):
x = left + h_spacing
y = (n + 1) * 3 * r_output
action_centers[n] = [x, y]
circle = plt.Circle((x, y), radius=r_output, color='red', ec='k', zorder=4)
ax.add_artist(circle)
# Draw output layer
if actor:
out_centers = np.empty([n_assets, 2])
for n in range(n_assets):
x = left + 2 * h_spacing
y = dy_asset[n]
out_centers[n] = [x, y]
circle = plt.Circle((x, y), radius=r_output, color='red', ec='k', zorder=4)
ax.add_artist(circle)
else:
out_centers = np.array([[left + 2 * h_spacing, 0.5]])
circle = plt.Circle(out_centers[0], radius=r_output, color='deeppink', ec='k', zorder=4)
ax.add_artist(circle)
# Connect the CNN to fc1
for a in range(n_assets):
for n1 in range(n_c_out):
for n2 in range(n_fc1):
line = plt.Line2D([cnn_centers[a, n1, 0], fc1_centers[a, n2, 0]],
[cnn_centers[a, n1, 1], fc1_centers[a, n2, 1]], c='grey', alpha=cnn_alpha, lw=1)
ax.add_artist(line)
# Connect the fc1 and actions if critic to output
if actor:
for a in range(n_assets):
for n1 in range(n_fc1):
for n2 in range(n_assets):
line = plt.Line2D([fc1_centers[a, n1, 0], out_centers[n2, 0]],
[fc1_centers[a, n1, 1], out_centers[n2, 1]], c='grey', alpha=fc1_alpha, lw=1)
ax.add_artist(line)
else:
for a in range(n_assets):
for n1 in range(n_fc1):
line = plt.Line2D([fc1_centers[a, n1, 0], out_centers[0, 0]],
[fc1_centers[a, n1, 1], out_centers[0, 1]], c='grey', alpha=0.8, lw=1)
ax.add_artist(line)
for a in range(n_assets):
line = plt.Line2D([action_centers[a, 0], out_centers[0, 0]],
[action_centers[a, 1], out_centers[0, 1]], c='grey', alpha=0.8, lw=1)
ax.add_artist(line)
plt.tight_layout()
if actor:
if real:
name = 'network-actor-real.png'
else:
name = 'network-actor-simple.png'
else:
if real:
name = 'network-critic-real.png'
else:
name = 'network-critic-simple.png'
fig.savefig(name, dpi=200)
fig.show()