-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_3.py
487 lines (389 loc) · 15.9 KB
/
problem_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#!/usr/bin/env python3
"""Problem 3 of the Data Structures Project.
Notes:
1. This was tested with Python 3.10.4.
Assumptions:
1. The encoded data is a string comprised of '0' and '1' characters.
"""
from collections import defaultdict
import sys
class Node(object):
"""The Node Class used in the Huffman Binary Tree.
Attributes:
key (str): The encoded character only used on the leaf nodes.
value (int): The frequency of the leaf nodes or the sum of the children values on intermediate nodes.
left (Node): The left child node on the binary tree.
right (Node): The right child node on the binary tree.
"""
def __init__(self, value=None, key=None):
"""The object initialization method.
Args:
key (str): The encoded character only used on the leaf nodes.
value (int): The frequency of the leaf nodes or the sum of the children values on intermediate nodes.
"""
self.key = key
self.value = value
self.left = None
self.right = None
class BinaryTree(object):
"""The Binary Class used as the Huffman Binary Tree.
Attributes:
root (Node | None): The root node of the tree.
map (dict): The mapping between each character and the associated encoded value.
"""
def __init__(self):
"""The object initialization method."""
self.root = None
self.map = {}
def get_root(self) -> Node:
return self.root
def set_root(self, node: Node):
self.root = node
def make_map(self, node: Node, code: str):
"""Makes the map between the character at the leaf node and the path to reach the leaf (code).
Args:
node (Node): The node to check for leaf or recurse.
code (str): The string representing the path to get to this node (left = 0, right = 1).
"""
if node is None:
return
# If no left child exists we are at a leaf node
if node.left is None:
self.map[node.key] = code
return
# If left child exists, update the code a recurse
self.make_map(node=node.left, code=code + '0')
# If a right child exists, update the code a recurse
if node.right is not None:
self.make_map(node=node.right, code=code + '1')
class MinHeap(object):
"""The Min-Heap Class used as a priority queue.
Attributes:
array (list): The array of nodes in the queue.
array_size (int): The length od the array.
"""
def __init__(self):
"""The object initialization method."""
self.array = []
self.array_size = 0
def extract_root(self) -> Node:
value = self.array.pop(0)
self.array_size -= 1
self.heapify_down(node_number=0)
return value
def insert(self, node: Node):
self.array.append(node)
self.array_size += 1
self.heapify_up(node_number=self.array_size - 1)
def get_root(self) -> Node:
return self.array[0]
@staticmethod
def get_parent_index(node_number: int) -> int:
return (node_number - 1) // 2
@staticmethod
def get_left_child_index(node_number: int) -> int:
return node_number * 2 + 1
@staticmethod
def get_right_child_index(node_number: int) -> int:
return node_number * 2 + 2
def heapify_up(self, node_number: int):
"""Move up the heap recursively and switch nodes if the parent is larger than the child.
Args:
node_number (int): The index of the node we are investigating.
"""
# Stop if at the root (i=0)
if node_number > 0:
parent_index = self.get_parent_index(node_number)
parent = self.array[parent_index]
node = self.array[node_number]
# Swap if larger and recurse up until parent is >= node or at root
if node.value < parent.value:
self.array[node_number] = parent
self.array[parent_index] = node
self.heapify_up(parent_index)
def heapify_down(self, node_number: int):
"""Move down the heap recursively and switch nodes if the parent is larger than the child.
Args:
node_number (int): The index of the node we are investigating.
"""
# Check left first, return if no child exist
left_child_index = self.get_left_child_index(node_number)
if left_child_index >= self.array_size:
return
node = self.array[node_number]
left_child = self.array[left_child_index]
# Swap if left is smaller and recurse until child < node or at the end leaf
if left_child.value < node.value:
self.array[node_number] = left_child
self.array[left_child_index] = node
self.heapify_down(left_child_index)
del node, left_child, left_child_index
# Also make sure the right side is > new parent
right_child_index = self.get_left_child_index(node_number)
if right_child_index < self.array_size:
node = self.array[node_number]
right_child = self.array[right_child_index]
# Swap if right is smaller and recurse until child < node or at the end leaf
if right_child.value < node.value:
self.array[node_number] = right_child
self.array[right_child_index] = node
self.heapify_down(right_child_index)
def make_huffman_tree(frequency: dict) -> BinaryTree:
"""Generates the Huffman Binary Tree from the given frequencies.
Args:
frequency (dict): A key for each character with the frequency as a value.
Returns:
BinaryTree: The desired Huffman Binary Tree.
"""
huffman_tree = BinaryTree()
# The priority queue is a Min-Heap
priority_queue = MinHeap()
for character, count in frequency.items():
priority_queue.insert(Node(key=character, value=count))
# Create the Binary Tree
# Note the leaf nodes also contain the key but the composite nodes will have the None default key value
if len(frequency) == 1:
huffman_tree.set_root(Node())
else:
while priority_queue.array_size > 1:
# Extract the two lowest frequency nodes from the queue, create a new node with the sum as the value
node1 = priority_queue.extract_root()
node2 = priority_queue.extract_root()
new_value = node1.value + node2.value
new_node = Node(value=new_value)
# Add the nodes from the queue as leafs, so they can build up the Huffman Tree
if node1.key is None and node2.key is not None:
new_node.left = node1
new_node.right = node2
elif node2.key is None and node1.key is not None:
new_node.left = node2
new_node.right = node1
elif node1.value < node2.value:
new_node.left = node1
new_node.right = node2
elif node1.value > node2.value:
new_node.left = node2
new_node.right = node1
elif node1.key is None and node2.key is None:
new_node.left = node1
new_node.right = node2
elif node1.key < node2.key:
new_node.left = node1
new_node.right = node2
else:
new_node.left = node2
new_node.right = node1
huffman_tree.set_root(new_node)
# Add the subtree to the priority queue as a single node
priority_queue.insert(node=new_node)
return huffman_tree
def huffman_encoding(data: str) -> tuple[str, BinaryTree]:
"""The Huffman encoding algorithm.
Args:
data (str): The string to encode.
Returns:
str: The encoded data.
BinaryTree: The Huffman binary tree.
Raises:
AttributeError: If the data is not a string.
"""
# Check the argument
if not isinstance(data, str):
raise AttributeError(f"Data must be a string but {type(data)} was given.")
# Return empty objects if the string is empty
if len(data) == 0:
return '', BinaryTree()
# Count the character frequency
frequency = defaultdict(int)
for c in data:
frequency[c] += 1
# Make the huffman tree and catch the degenerate case of a single unique character
if len(frequency) == 1:
huffman_tree = BinaryTree()
key = [k for k in frequency.keys()][0]
huffman_tree.set_root(Node(key=key, value=frequency[key]))
else:
huffman_tree = make_huffman_tree(frequency)
# Create the map from character to Huffman Code
root = huffman_tree.get_root()
huffman_tree.make_map(node=root, code='')
mapping = huffman_tree.map
# Encode the data
encoded_data = ''.join([mapping[c] for c in data])
return encoded_data, huffman_tree
def huffman_decoding(data: str, tree: BinaryTree) -> str:
"""Decodes the encoded Huffman data with the associated Tree.
Args:
data (str): The string to decode.
tree (BinaryTree): The Huffman binary tree.
Returns:
str: The decoded data.
Raises:
AttributeError: If the data is not a string of tree not a BinaryTree.
"""
# Check the argument
if not isinstance(data, str):
raise AttributeError(f"'data' must be a string but {type(data)} was given.")
if not isinstance(tree, BinaryTree):
raise AttributeError(f"'tree' must be a BinaryTree but {type(data)} was given.")
# Catch the degenerate case when there is only one character
root = tree.get_root()
if len(data) == 0:
return root.key
decoded_data = ''
while len(data) > 0:
character, data = find_character(node=root, data=data, level=0)
decoded_data += character
return decoded_data
def find_character(node: Node, data: str, level: int) -> tuple[str, str]:
"""Finds the character at the leaf node indicated by the prefix of the code data.
Args:
node (Node): The node of the Huffman Binary Tree currently being investigated.
data (str): The encoded data that we are following, note after a character is located the used data is removed.
level (int): How much of the data are we currently reading, used to removed used data.
Returns:
str: The leaf node key, which is the desired character.
str: The encoded data with the used digits at the start of the data removed.
"""
# Catch degenerate case
if node is None:
return "", ""
# Return character if at leaf and remove the used digits from the data
if node.key is not None:
return node.key, data[level:]
# Recurse until leaf found
if level >= len(data):
raise AttributeError(f"Can't find {data} in the Huffman Binary Tree.")
if data[level] == '0':
return find_character(node=node.left, data=data, level=level + 1)
else:
return find_character(node=node.right, data=data, level=level + 1)
def given_tests():
"""Runs the given tests."""
# Set some testing constants
a_great_sentence = "The bird is the word"
print("The size of the data is: {}\n".format(sys.getsizeof(a_great_sentence)))
print("The content of the data is: {}\n".format(a_great_sentence))
encoded_data, tree = huffman_encoding(a_great_sentence)
print("The size of the encoded data is: {}\n".format(sys.getsizeof(int(encoded_data, base=2))))
print("The content of the encoded data is: {}\n".format(encoded_data))
decoded_data = huffman_decoding(encoded_data, tree)
print("The size of the decoded data is: {}\n".format(sys.getsizeof(decoded_data)))
print("The content of the encoded data is: {}\n".format(decoded_data))
# noinspection PyBroadException
def user_tests():
"""Runs the user tests."""
# Set some testing constants
n_errors = 0
# Test the mapping
print("\nUser test set 1 - Mapping")
test = 0
for arg, expected in [("bbccaa", {"b": "00", "c": "01", "a": "1"}), ("rrs", {"r": "1", "s": "0"}), ("t", {"t": ""}),
("AAAAAAABBBCCCCCCCDDEEEEEE", {"A": "10", "B": "001", "C": "11", "D": "000", "E": "01"})]:
test += 1
_, huffman_tree = huffman_encoding(arg)
huffman_tree.make_map(node=huffman_tree.get_root(), code='')
actual = huffman_tree.map
success = True
if len(actual) != len(expected):
print(f"Error test {test}: expected {expected} but got {actual}.")
n_errors += 1
success = False
else:
for key in expected.keys():
if actual[key] != expected[key]:
print(f"Error test {test}: for {key} expected {expected[key]} but got {actual[key]}.")
n_errors += 1
success = False
if success:
print(f"Test {test} passed.")
# Test the encoding
print("\nUser test set 2 - Encoding")
test = 0
for arg, expected in [("AAAAAAABBBCCCCCCCDDEEEEEE", "1010101010101000100100111111111111111000000010101010101"),
("t", ""), ("rrs", "110"), ("bbccaa", "0000010111")]:
test += 1
actual, _ = huffman_encoding(arg)
if actual == expected:
print(f"Test {test} passed.")
else:
print(f"Error test {test}: expected {expected} but got {actual}.")
n_errors += 1
# Test the decoding
print("\nUser test set 3 - Decoding")
test = 0
for expected in ["r", "ab", "ba"]:
test += 1
encoded_data, tree = huffman_encoding(expected)
actual = huffman_decoding(encoded_data, tree)
if actual == expected:
print(f"Test {test} passed.")
else:
print(f"Error test {test}: expected {expected} but got {actual}.")
n_errors += 1
# Test invalid encoding arguments
print("\nUser test set 4 - Invalid encoding arguments")
test = 0
for arg in [1, [], {}, None]:
test += 1
try:
# noinspection PyTypeChecker
huffman_encoding(arg)
except AttributeError:
print(f"Test {test} passed.")
else:
print(f"Error test {test}: expected an AttributeError exception.")
n_errors += 1
# Test invalid decoding arguments
print("\nUser test set 5 - Invalid decoding and encoding arguments")
test = 0
string1 = "abbccc"
data1, tree1 = huffman_encoding(string1)
for arg in [1, [], {}, None]:
test += 1
try:
# noinspection PyTypeChecker
huffman_decoding(arg, tree1)
except AttributeError:
print(f"Test {test} passed.")
else:
print(f"Error test {test}: expected an AttributeError exception.")
n_errors += 1
test += 1
try:
# noinspection PyTypeChecker
huffman_decoding(data1, arg)
except AttributeError:
print(f"Test {test} passed.")
else:
print(f"Error test {test}: expected an AttributeError exception.")
n_errors += 1
# Test mismatched tree
print("\nUser test set 6 - Mismatched tree and data.")
test = 1
string2 = "wxxyyyzzzz"
data2, tree2 = huffman_encoding(string2)
try:
decoded = huffman_decoding(data1, tree2)
except:
print(f"Error test {test}: Wasn't expecting an exception.")
n_errors += 1
else:
print(f"Test {test} passed with silly results; {decoded}.")
test += 1
try:
decoded = huffman_decoding(data2, tree1)
except:
print(f"Error test {test}: Wasn't expecting an exception.")
n_errors += 1
else:
print(f"Test {test} passed with silly results; {decoded}.")
print("\n*******************")
if n_errors > 0:
raise RuntimeError(f"BOO HOO, {n_errors} errors detected.\n")
else:
print("WOO HOO, No errors detected.\n")
# **********************************************************
if __name__ == '__main__':
given_tests()
user_tests()