forked from awni/semantic-rntn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
278 lines (219 loc) · 8.39 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import collections
from scipy.spatial.distance import cdist
from ucca_tree import Node, Tree
np.seterr(over='raise', under='raise')
class RNN (object):
def __init__(self, wvec_dim, output_dim, num_words, mb_size=30, wvecs=None, rho=1e-4):
self.wvec_dim = wvec_dim
self.output_dim = output_dim
self.num_words = num_words
self.mb_size = mb_size
self.default_vec = lambda: np.zeros((wvec_dim,))
self.rho = rho
# Word vectors
if wvecs is not None:
self.L = wvecs
else:
self.L = 0.01 * np.random.randn(self.wvec_dim, self.num_words)
# Hidden activation weights
self.W = 0.01 * np.random.randn(self.wvec_dim, 2 * self.wvec_dim)
self.b = np.zeros(self.wvec_dim)
# Softmax weights
self.Ws = 0.01 * np.random.randn(self.output_dim, self.wvec_dim)
self.bs = np.zeros(self.output_dim)
self.stack = [self.L, self.W, self.b, self.Ws, self.bs]
# Gradients
self.dW = np.empty(self.W.shape)
self.db = np.empty(self.wvec_dim)
self.dWs = np.empty(self.Ws.shape)
self.dbs = np.empty(self.output_dim)
def cost_and_grad(self, mb_data, test=False):
"""
Each datum in the minibatch is a tree.
Forward prop each tree.
Backprop each tree.
Returns
cost
Gradient w.r.t. W, Ws, b, bs
Gradient w.r.t. L in sparse form.
"""
self.init_cost_and_grad()
correct, cost, total, trees = self.batch_forward_prop(mb_data, test)
if test:
return (1. / len(mb_data)) * cost, correct, total, trees
# Back prop each tree in minibatch
for tree in mb_data:
self.back_prop(tree.root)
# scale cost and grad by mb size
scale = (1. / self.mb_size)
for v in self.dL.values():
v *= scale
cost = self.regularize(cost)
return scale * cost, self.grad(scale)
def batch_forward_prop(self, mb_data, test):
# Forward prop each tree in minibatch
cost = correct = total = 0.0
trees = []
for tree in mb_data:
c, corr, tot, pred = self.forward_prop(tree.root,
pred_tree="labels" if test else None)
cost += c
correct += corr
total += tot
if test:
trees.append(Tree(pred))
return correct, cost, total, trees
def init_cost_and_grad(self):
self.L, self.W, self.b, self.Ws, self.bs = self.stack
# Zero gradients
self.dW[:] = 0
self.db[:] = 0
self.dWs[:] = 0
self.dbs[:] = 0
self.dL = collections.defaultdict(self.default_vec)
def regularize(self, cost):
# Add L2 Regularization
cost += (self.rho / 2) * np.sum(self.W ** 2)
cost += (self.rho / 2) * np.sum(self.Ws ** 2)
return cost
def grad(self, scale):
return [
self.dL,
scale * (self.dW + self.rho * self.W),
scale * self.db,
scale * (self.dWs + self.rho * self.Ws),
scale * self.dbs
]
def forward_prop(self, node, pred_tree=None):
cost = correct = total = 0.0
children = []
pred = None
if node.is_leaf:
node.h_acts = self.L[:, node.word]
else:
for child in (node.left, node.right):
if not child.fprop:
c, corr, tot, pred = self.forward_prop(child, pred_tree)
cost += c
correct += corr
total += tot
children.append(pred)
self.hidden_forward_prop(node)
# Softmax
node.probs = np.dot(self.Ws, node.h_acts) + self.bs
node.probs -= np.max(node.probs)
node.probs = np.exp(node.probs)
node.probs /= np.sum(node.probs)
node.fprop = True
if pred_tree is not None:
pred = Node(np.argmax(node.probs))
pred.word = node.word
if node.is_leaf:
pred.is_leaf = True
else:
pred.left, pred.right = children
for child in children:
child.parent = pred
return cost - np.log(node.probs[node.label]),\
correct + (np.argmax(node.probs) == node.label),\
total + 1,\
pred
def hidden_forward_prop(self, node):
# Affine
lr = np.hstack([node.left.h_acts, node.right.h_acts])
node.h_acts = np.dot(self.W, lr) + self.b
# Relu
# node.h_acts[node.h_acts < 0] = 0
# Tanh
node.h_acts = np.tanh(node.h_acts)
def back_prop(self, node, error=None):
# Clear nodes
node.fprop = False
# Softmax grad
deltas = node.probs
deltas[node.label] -= 1.0
self.dWs += np.outer(deltas, node.h_acts)
self.dbs += deltas
deltas = np.dot(self.Ws.T, deltas)
if error is not None:
deltas += error
# deltas *= (node.h_acts != 0)
deltas *= (1 - node.h_acts ** 2)
# Leaf nodes update word vecs
if node.is_leaf:
self.dL[node.word] += deltas
return
# Hidden grad
if not node.is_leaf:
self.hidden_back_prop(deltas, node)
def hidden_back_prop(self, deltas, node):
self.dW += np.outer(deltas,
np.hstack([node.left.h_acts,
node.right.h_acts]))
self.db += deltas
# Error signal to children
deltas = np.dot(self.W.T, deltas)
self.back_prop(node.left, deltas[:self.wvec_dim])
self.back_prop(node.right, deltas[self.wvec_dim:])
def update_params(self, scale, update, log=False):
"""
Updates parameters as
p := p - scale * update.
If log is true, prints root mean square of parameter
and update.
"""
if log:
for P, dP in zip(self.stack[1:], update[1:]):
p_rms = np.sqrt(np.mean(P ** 2))
dp_rms = np.sqrt(np.mean((scale * dP) ** 2))
print("weight rms=%f -- update rms=%f" % (p_rms, dp_rms))
self.stack[1:] = [P + scale * dP for P, dP in zip(self.stack[1:], update[1:])]
# handle dictionary update sparsely
dL = update[0]
for j in dL.keys():
self.L[:, j] += scale * dL[j]
def to_file(self, fid):
import pickle as pickle
pickle.dump(self.stack, fid)
def from_file(self, fid):
import pickle as pickle
self.stack = pickle.load(fid)
def check_grad(self, data, epsilon=1e-6):
cost, grad = self.cost_and_grad(data)
for W, dW in zip(self.stack[1:], grad[1:]):
W = W[..., None] # add dimension since bias is flat
dW = dW[..., None]
for i in range(W.shape[0]):
for j in range(W.shape[1]):
W[i, j] += epsilon
cost_p, _ = self.cost_and_grad(data)
W[i, j] -= epsilon
num_grad = (cost_p - cost) / epsilon
err = np.abs(dW[i, j] - num_grad)
print("Analytic %.9f, Numerical %.9f, Relative Error %.9f" % (dW[i, j], num_grad, err))
# check dL separately since dict
dL = grad[0]
L = self.stack[0]
for j in dL.keys():
for i in range(L.shape[0]):
L[i, j] += epsilon
cost_p, _ = self.cost_and_grad(data)
L[i, j] -= epsilon
num_grad = (cost_p - cost) / epsilon
err = np.abs(dL[j][i] - num_grad)
print("Analytic %.9f, Numerical %.9f, Relative Error %.9f" % (dL[j][i], num_grad, err))
def nearest(self, word, k=10, metric='cosine'):
self.L = self.stack[0]
distances = cdist(self.L.T, self.L[np.newaxis, :, word], metric).reshape(-1)
neighbors = distances.argsort()[1:k+1]
return neighbors, distances[neighbors]
if __name__ == '__main__':
import ucca_tree
train = ucca_tree.load_trees()
num_words = len(ucca_tree.load_word_map())
output_dim = len(ucca_tree.load_label_map())
wvec_dim = 10
rnn = RNN(wvec_dim, output_dim, num_words, mb_size=4)
print("Numerical gradient check...")
rnn.check_grad(train[:4])