forked from awni/semantic-rntn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_net.py
129 lines (101 loc) · 4.09 KB
/
run_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import optparse
import pickle
import sgd as optimizer
import time
from ucca_tree import *
import rnn
import rntn
models = {"rnn": rnn.RNN, "rntn": rntn.RNTN}
def run(args=None):
usage = "usage : %prog [options]"
parser = optparse.OptionParser(usage=usage)
parser.add_option("--test", action="store_true", dest="test", default=False)
parser.add_option("--distance", action="store_true", dest="distance", default=False)
parser.add_option("--metric", dest="metric", default="cosine")
# Optimizer
parser.add_option("--minibatch", dest="minibatch", type="int", default=30)
parser.add_option("--optimizer", dest="optimizer", type="string",
default="adagrad")
parser.add_option("--model", dest="model", type="string", default="rnn")
parser.add_option("--epochs", dest="epochs", type="int", default=50)
parser.add_option("--step", dest="step", type="float", default=1e-2)
parser.add_option("--output_dim", dest="output_dim", type="int", default=0)
parser.add_option("--wvec_dim", dest="wvec_dim", type="int", default=50)
parser.add_option("--out_file", dest="out_file", type="string",
default="models/test.bin")
parser.add_option("--in_file", dest="in_file", type="string",
default="models/test.bin")
parser.add_option("--data", dest="data", type="string", default="train")
parser.add_option("--wvec_file", dest="wvec_file", type="string", default=None)
(opts, args) = parser.parse_args(args)
# Testing
if opts.test:
test(opts.in_file, opts.data)
return
# Finding nearest neighbors to input words
if opts.distance:
distance(opts.in_file, opts.metric)
return
print("Loading data...")
# load training data
trees = load_trees()
word_map = load_word_map()
opts.num_words = len(word_map)
if opts.output_dim == 0:
opts.output_dim = len(load_label_map())
if opts.wvec_file is None:
wvecs = None
else:
print("Loading word vectors...")
wvecs = load_word_vectors(opts.wvec_dim, opts.wvec_file, word_map)
model = models[opts.model]
net = model(opts.wvec_dim, opts.output_dim, opts.num_words, opts.minibatch, wvecs)
sgd = optimizer.SGD(net, alpha=opts.step, minibatch=opts.minibatch,
optimizer=opts.optimizer)
save(net, opts, sgd)
for e in range(opts.epochs):
start = time.time()
print("Running epoch %d" % e)
sgd.run(trees)
end = time.time()
print("Time per epoch : %f" % (end - start))
save(net, opts, sgd)
def save(net, opts, sgd):
with open(opts.out_file, 'wb') as fid:
pickle.dump(opts, fid)
pickle.dump(sgd.costt, fid)
net.to_file(fid)
def test(net_file, data_set):
trees = load_trees(data_set)
assert trees, "No data found"
net = load(net_file)
print("Testing...")
cost, correct, total, pred = net.cost_and_grad(trees, test=True)
print("Cost %f, Correct %d/%d, Acc %f" % (cost, correct, total, correct / float(total)))
print_trees('results/gold.txt', trees, 'Labeled')
print_trees('results/pred.txt', pred, 'Predicted')
def distance(net_file, metric):
net = load(net_file)
word_map = load_word_map()
inverted = invert_map(word_map)
k = 10
while True:
try:
word = str(input("Enter word: "))
except EOFError: break
index = word_map.get(word) or word_map.get(UNK)
neighbors, distances = net.nearest(index, k, metric)
neighbors = [inverted[index] for index in neighbors]
print("\n".join("%-30s%.5f" % (n, d) for n, d in zip(neighbors, distances)))
print()
def load(net_file):
assert net_file is not None, "Must give model to test"
with open(net_file, 'rb') as fid:
opts = pickle.load(fid)
_ = pickle.load(fid)
model = models[getattr(opts, "model", net_file.split("/")[-1].partition("_")[0])]
net = model(opts.wvec_dim, opts.output_dim, opts.num_words, opts.minibatch)
net.from_file(fid)
return net
if __name__ == '__main__':
run()