-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch.py
135 lines (106 loc) · 5.12 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import const
import dataParser
from functions import *
from features.grams import *
import configuration as config
import numpy as np
from features.extractFeatures import *
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils import data
import const
# extract the data from csv
# const.M_names, const.F_names, const.name_map = dataParser.get_data()
dataParser.get_data("text_samples/english.txt", const.english_words, const.word_map, 0)
dataParser.get_data("text_samples/french.txt", const.french_words, const.word_map, 1)
duplicates = [x for x in const.english_words if x in const.french_words]
const.english_words = [x for x in const.english_words if x not in duplicates]
const.french_words = [x for x in const.french_words if x not in duplicates]
for i in duplicates:
if const.word_map.get(i):
del const.word_map[i]
#extract the training/test sets
const.ngram_training_set = extract(config.data_extraction_size)
const.training_set = extract(config.training_set_size, labelled=True)
const.cv_set = extract(config.cv_set_size, labelled=True)
const.test_set = extract(config.test_set_size, labelled=True)
#determine most common ngrams
getCommonGrams(const.ngram_training_set)
get_suffixes(const.ngram_training_set)
const.featureCount += config.di_num + config.tri_num + config.last_letters + config.di_sufnum + config.tri_sufnum
const.X_train, const.y_train = extractFeatures(const.training_set)
const.X_cv, const.y_cv = extractFeatures(const.cv_set)
const.X_test, const.y_test = extractFeatures(const.test_set)
#--CLASSIFER--#
X_train = torch.stack([torch.tensor(i) for i in const.X_train])
y_train = torch.from_numpy(const.y_train)
X_cv = torch.stack([torch.tensor(i) for i in const.X_cv])
y_cv = torch.from_numpy(const.y_cv)
X_test = torch.stack([torch.tensor(i) for i in const.X_test])
y_test = torch.from_numpy(const.y_test)
training_set = data.TensorDataset(X_train, y_train)
training_loader = data.DataLoader(training_set, batch_size=config.minibatch, shuffle=True)
cv_set = data.TensorDataset(X_cv, y_cv)
cv_loader = data.DataLoader(cv_set, batch_size=config.minibatch, shuffle=False)
test_set = data.TensorDataset(X_test, y_test)
test_loader = data.DataLoader(test_set, batch_size=config.minibatch, shuffle=False)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = nn.Linear(const.featureCount, 1)
def forward(self, X):
return self.linear(X)
model = Model()
cost = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
epochs = int(config.iterations / config.training_set_size * config.minibatch)
iterations = 0
for i in range(epochs):
for words, languages in training_loader:
words = words.view(-1, const.featureCount).requires_grad_()
optimizer.zero_grad()
hypothesis = torch.sigmoid(model(words.float()))
loss = cost(hypothesis.reshape(config.minibatch), languages.float())
loss.backward()
optimizer.step()
iterations += 1
if not iterations % config.print_interval:
for num, set in enumerate([cv_loader, test_loader]):
correct = 0
total = 0
for word, language in set:
word = word.view(-1, const.featureCount).requires_grad_()
pred = torch.sigmoid(model(word.float()))
total += language.size(0)
correct += ((pred.reshape(config.minibatch)-language.reshape(config.minibatch)).abs_() < 0.5).sum()
accuracy = 100 * correct.item() / total
type = "Test" if num else "CV"
print('Type: {}- Iteration: {}. Cost: {}. Accuracy: {}'.format(type, iterations, loss.item(), accuracy))
# print("")
if config.IS_DEBUG:
for word, param in model.named_parameters():
if param.requires_grad and config.IS_DEBUG:
print(word)
weights = param.data
for feature, weight in zip(const.featureList, weights[0]):
print(f"[{feature}] -> {weight}")
config.IS_DEBUG = False
#now we can test custom data
if config.IS_CUSTOM:
word_map_custom = dataParser.get_custom_data()
X_custom, y_custom = extractFeatures(word_map_custom)
X_custom_tensor = torch.stack([torch.tensor(i) for i in X_custom])
y_custom_tensor = torch.from_numpy(y_custom)
custom_set = data.TensorDataset(X_custom_tensor, y_custom_tensor)
custom_loader = data.DataLoader(custom_set, batch_size=config.minibatch)
for word, language in custom_loader:
name = name.view(-1, const.featureCount).requires_grad_()
pred = torch.sigmoid(model(name.float()))
c_total = language.size(0)
predictions = (pred.reshape(len(word_map_custom)) - language.reshape(len(word_map_custom))).abs_() < 0.5
for index, name in enumerate(word_map_custom.keys()):
print('Word: {}. Language: {}. Prediction: {}'.format(name, "FRE" if language[index].item() else "ENG", "FRE" if predictions[index].item() else "ENG"))