forked from hzeller/rpi-rgb-led-matrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRGBLedMatrix.cs
220 lines (191 loc) · 8.1 KB
/
RGBLedMatrix.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;
namespace rpi_rgb_led_matrix_sharp
{
public class RGBLedMatrix : IDisposable
{
#region DLLImports
[DllImport("librgbmatrix.so")]
internal static extern IntPtr led_matrix_create(int rows, int chained, int parallel);
[DllImport("librgbmatrix.so", CallingConvention= CallingConvention.Cdecl, CharSet = CharSet.Ansi)]
internal static extern IntPtr led_matrix_create_from_options(
ref InternalRGBLedMatrixOptions options,
IntPtr argc,
out IntPtr argv);
[DllImport("librgbmatrix.so")]
internal static extern void led_matrix_delete(IntPtr matrix);
[DllImport("librgbmatrix.so")]
internal static extern IntPtr led_matrix_create_offscreen_canvas(IntPtr matrix);
[DllImport("librgbmatrix.so")]
internal static extern IntPtr led_matrix_swap_on_vsync(IntPtr matrix, IntPtr canvas);
[DllImport("librgbmatrix.so")]
internal static extern IntPtr led_matrix_get_canvas(IntPtr matrix);
#endregion
public RGBLedMatrix(int rows, int chained, int parallel)
{
matrix= led_matrix_create(rows, chained, parallel);
}
public RGBLedMatrix(RGBLedMatrixOptions options)
{
var opt = new InternalRGBLedMatrixOptions();
try {
// pass in options to interal data structure
opt.chain_length = options.ChainLength;
opt.rows = options.Rows;
opt.cols = options.Cols;
opt.hardware_mapping = options.HardwareMapping != null ? Marshal.StringToHGlobalAnsi(options.HardwareMapping) : IntPtr.Zero;
opt.inverse_colors = (uint)(options.InverseColors ? 0 : 1);
opt.led_rgb_sequence = options.LedRgbSequence != null ? Marshal.StringToHGlobalAnsi(options.LedRgbSequence) : IntPtr.Zero;
opt.parallel = options.Parallel;
opt.multiplexing = options.Multiplexing;
opt.pwm_bits = options.PwmBits;
opt.pwm_lsb_nanoseconds = options.PwmLsbNanoseconds;
opt.scan_mode = options.ScanMode;
opt.show_refresh_rate = (uint)(options.ShowRefreshRate ? 0 : 1);
opt.brightness = options.Brightness;
opt.disable_hardware_pulsing = (uint)(options.DisableHardwarePulsing ? 1 : 0);
opt.row_address_type = options.RowAddressType;
// dont care about these
var argc = IntPtr.Zero;
var argv = IntPtr.Zero;
matrix = led_matrix_create_from_options(ref opt, argc, out argv);
}
finally
{
if (options.HardwareMapping != null) Marshal.FreeHGlobal(opt.hardware_mapping);
if (options.LedRgbSequence != null) Marshal.FreeHGlobal(opt.led_rgb_sequence);
}
}
private IntPtr matrix;
public RGBLedCanvas CreateOffscreenCanvas()
{
var canvas=led_matrix_create_offscreen_canvas(matrix);
return new RGBLedCanvas(canvas);
}
public RGBLedCanvas GetCanvas()
{
var canvas = led_matrix_get_canvas(matrix);
return new RGBLedCanvas(canvas);
}
public RGBLedCanvas SwapOnVsync(RGBLedCanvas canvas)
{
canvas._canvas = led_matrix_swap_on_vsync(matrix, canvas._canvas);
return canvas;
}
#region IDisposable Support
private bool disposedValue = false;
protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
led_matrix_delete(matrix);
disposedValue = true;
}
}
~RGBLedMatrix() {
Dispose(false);
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
#endregion
#region RGBLedMatrixOptions struct
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
internal struct InternalRGBLedMatrixOptions
{
public IntPtr hardware_mapping;
public int rows;
public int cols;
public int chain_length;
public int parallel;
public int multiplexing;
public int pwm_bits;
public int pwm_lsb_nanoseconds;
public int brightness;
public int scan_mode;
public IntPtr led_rgb_sequence;
public uint disable_hardware_pulsing;
public uint show_refresh_rate;
public uint inverse_colors;
public int row_address_type;
};
#endregion
}
public struct RGBLedMatrixOptions
{
/// <summary>
/// Name of the hardware mapping used. If passed NULL here, the default is used.
/// </summary>
public string HardwareMapping;
/// <summary>
/// The "rows" are the number of rows supported by the display, so 32 or 16.
/// Default: 32.
/// </summary>
public int Rows;
/// <summary>
/// The "cols" are the number of columns per panel. Typically something
/// like 32, but also 64 is possible. Sometimes even 40.
/// cols * chain_length is the total length of the display, so you can
/// represent a 64 wide display as cols=32, chain=2 or cols=64, chain=1;
/// same thing, but more convenient to think of.
/// </summary>
public int Cols;
/// <summary>
/// The chain_length is the number of displays daisy-chained together
/// (output of one connected to input of next). Default: 1
/// </summary>
public int ChainLength;
/// <summary>
/// The number of parallel chains connected to the Pi; in old Pis with 26
/// GPIO pins, that is 1, in newer Pis with 40 interfaces pins, that can also
/// be 2 or 3. The effective number of pixels in vertical direction is then
/// thus rows * parallel. Default: 1
/// </summary>
public int Parallel;
/// <summary>
/// Set PWM bits used for output. Default is 11, but if you only deal with limited
/// comic-colors, 1 might be sufficient. Lower require less CPU and increases refresh-rate.
/// </summary>
public int PwmBits;
/// <summary>
/// Change the base time-unit for the on-time in the lowest significant bit in
/// nanoseconds. Higher numbers provide better quality (more accurate color, less
/// ghosting), but have a negative impact on the frame rate.
/// </summary>
public int PwmLsbNanoseconds;
/// <summary>
/// The initial brightness of the panel in percent. Valid range is 1..100
/// </summary>
public int Brightness;
/// <summary>
/// Scan mode: 0=progressive, 1=interlaced
/// </summary>
public int ScanMode;
/// <summary>
/// Default row address type is 0, corresponding to direct setting of the
/// row, while row address type 1 is used for panels that only have A/B,
/// typically some 64x64 panels
/// </summary>
public int RowAddressType;
/// <summary>
/// Type of multiplexing. 0 = direct, 1 = stripe, 2 = checker (typical 1:8)
/// </summary>
public int Multiplexing;
/// <summary>
/// In case the internal sequence of mapping is not "RGB", this contains the real mapping. Some panels mix up these colors.
/// </summary>
public string LedRgbSequence;
/// <summary>
/// Allow to use the hardware subsystem to create pulses. This won't do anything if output enable is not connected to GPIO 18.
/// </summary>
public bool DisableHardwarePulsing;
public bool ShowRefreshRate;
public bool InverseColors;
};
}