-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain.py
318 lines (259 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import argparse
import datetime
import os
import tensorflow as tf
from dataset import KittiSFMDataset
from disparitynet import DisparityNet
from posenet import PoseNet
from utils import pixel_coord, ssim_loss, smooth_loss, bilinear_sampler, forwardproject, backproject, disp_to_depth
parser = argparse.ArgumentParser(description="Disparity Project")
parser.add_argument('--identifier', default="sfm_resnet18")
parser.add_argument('--data_dir')
parser.add_argument("--input_h", default=192)
parser.add_argument("--input_w", default=640)
parser.add_argument("--batch_size", default=8)
parser.add_argument("--epochs", default=50)
parser.add_argument("--num_scales", default=4)
parser.add_argument("--num_input_frames", default=2, help='num of frames as input to posenet')
parser.add_argument("--frame_ids", default=[0, -1, 1], help='frames to load ')
parser.add_argument("--draw_every_iter", default=1000)
PROJECT_DIR = os.getcwd()
MIN_DEPTH = 1e-3
MAX_DEPTH = 80
class Trainer:
def __init__(self, params, output_dir):
self.params = params
# Models
self.models = {}
self.models['disparity'] = DisparityNet(input_shape=(params.input_h, params.input_w, 3))
self.models['pose'] = PoseNet(input_shape=(params.input_h, params.input_w, 3 * params.num_input_frames),
num_input_frames=params.num_input_frames)
# Datasets
train_dataset = KittiSFMDataset(params.data_dir, 'train',
(params.input_h, params.input_w),
batch_size=params.batch_size,
frame_idx=params.frame_ids)
val_dataset = KittiSFMDataset(params.data_dir, 'val',
(params.input_h, params.input_w),
frame_idx=params.frame_ids,
batch_size=params.batch_size)
self.train_dataset = train_dataset.load_tfdataset()
self.val_dataset = val_dataset.load_tfdataset()
# Optimizer
self.total_iteration = (train_dataset.num_samples // params.batch_size) * params.epochs
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(0.0002, end_learning_rate=0.000001,
decay_steps=self.total_iteration,
power=0.5)
self.optimizer = tf.keras.optimizers.Adam(learning_rate_fn)
# Tensorboard & Meters
train_log_dir = os.path.join(output_dir, 'train_logs')
val_log_dir = os.path.join(output_dir, 'val_logs')
self.train_summary_writer = tf.summary.create_file_writer(train_log_dir)
self.test_summary_writer = tf.summary.create_file_writer(val_log_dir)
self.train_meter = {
'ssim': tf.keras.metrics.Mean(name='ssim'),
'l1': tf.keras.metrics.Mean(name='l1'),
'smooth': tf.keras.metrics.Mean(name='smooth'),
}
self.val_meter = {
'ssim': tf.keras.metrics.Mean(name='ssim'),
'l1': tf.keras.metrics.Mean(name='l1'),
'smooth': tf.keras.metrics.Mean(name='smooth'),
}
self.step = 0
# Load states from optimiser and model if available
self.ckpt_disp, self.manager_disp = self.setup_logger(self.models['disparity'],
os.path.join(output_dir, 'disparity_model'))
self.ckpt_pose, self.manager_pose = self.setup_logger(self.models['pose'],
os.path.join(output_dir, 'pose_model'))
self.start_epoch = int(self.ckpt_disp.step) + 1 if self.manager_disp.latest_checkpoint else int(
self.ckpt_disp.step)
print("Starting training step {}".format(self.ckpt_disp.step.numpy()))
# Helpers
self.pix_coords = pixel_coord(params.batch_size, params.input_h, params.input_w, True) # [b, 3, npoints]
def setup_logger(self, model, out_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(0), optimizer=self.optimizer, net=model)
manager = tf.train.CheckpointManager(ckpt, out_dir, max_to_keep=1)
ckpt.restore(manager.latest_checkpoint)
return ckpt, manager
def train(self):
for epoch in range(self.start_epoch, self.params.epochs):
[self.train_meter[k].reset_states() for k, v in self.train_meter.items()]
[self.val_meter[k].reset_states() for k, v in self.val_meter.items()]
# Train
for i, inputs in enumerate(self.train_dataset):
loss, outputs = self.train_step(inputs)
print(
f'\rEpoch: [{epoch}/{self.params.epochs}] | 'f'Iter: [{self.optimizer.iterations.numpy()}/{self.total_iteration}] | '
f'Lr: {self.optimizer._decayed_lr(tf.float32):.5f} | '
f"ssim: {self.train_meter['ssim'].result():.4f} | ",
f"l1: {self.train_meter['l1'].result():.4f} | ",
f"smooth: {self.train_meter['smooth'].result():.10f} | ",
f"total loss: {loss['loss']:.4f} | ",
end="")
if i % self.params.draw_every_iter == 0:
with self.train_summary_writer.as_default():
tf.summary.image('disparity', outputs['disparity0'], step=epoch)
tf.summary.image('depth', outputs['depth0'], step=epoch)
stack_prediction_pred = tf.concat([outputs['pred-10'], inputs['img'], outputs['pred10']],
axis=1)
stack_prediction_gt = tf.concat([inputs['img-1'], inputs['img'], inputs['img1']], axis=1)
tf.summary.image('predictions', stack_prediction_pred, step=epoch)
tf.summary.image('groundtruth', stack_prediction_gt, step=epoch)
# Validation
for i, inputs in enumerate(self.val_dataset):
self.val_step(inputs)
print(
f'\rEpoch: [{epoch}/{params.epochs}] | '
f"ssim: {self.val_meter['ssim'].result():.4f} | ",
f"l1: {self.val_meter['l1'].result():.4f} | ",
f"smooth: {self.val_meter['smooth'].result():.4f} | ",
end="")
with self.train_summary_writer.as_default():
tf.summary.scalar('ssim', self.train_meter['ssim'].result(), step=epoch)
tf.summary.scalar('l1', self.train_meter['l1'].result(), step=epoch)
tf.summary.scalar('smooth', self.train_meter['smooth'].result(), step=epoch)
with self.test_summary_writer.as_default():
tf.summary.scalar('ssim', self.val_meter['ssim'].result(), step=epoch)
tf.summary.scalar('l1', self.val_meter['l1'].result(), step=epoch)
tf.summary.scalar('smooth', self.val_meter['smooth'].result(), step=epoch)
# save and increment
save_path = self.manager_disp.save()
save_path = self.manager_pose.save()
print("Saved checkpoint for step {}: {}".format(int(self.ckpt_disp.step), save_path))
self.ckpt_disp.step.assign_add(1)
self.ckpt_pose.step.assign_add(1)
@tf.function
def train_step(self, inputs):
with tf.GradientTape() as tape:
outputs = self.models['disparity'](inputs['img'], training=True)
outputs.update(self.predict_pose(inputs))
outputs.update(self.view_synthesis(inputs, outputs))
loss = self.criterions(inputs, outputs)
trainable_params = self.models['disparity'].trainable_variables + self.models['pose'].trainable_variables
gradients = tape.gradient(loss['loss'], trainable_params)
self.optimizer.apply_gradients(zip(gradients, trainable_params))
# Update moving average
[self.train_meter[k](loss[k]) for k, v in self.train_meter.items()]
return loss, outputs
@tf.function
def val_step(self, inputs):
outputs = self.models['disparity'](inputs['img'], training=False)
outputs.update(self.predict_pose(inputs))
outputs.update(self.view_synthesis(inputs, outputs))
loss = self.criterions(inputs, outputs)
# Update moving average
[self.val_meter[k](loss[k]) for k, v in self.val_meter.items()]
def criterions(self, inputs, outputs):
loss_dict = {}
total_l1_loss = 0.
total_ssim_loss = 0.
total_smooth_loss = 0.
for scale in range(self.params.num_scales):
l1_losses = []
ssim_losses = []
for f_i in self.params.frame_ids[1:]:
target_rgb = inputs['img']
pred_rgb = outputs[f'pred{f_i}{scale}']
# L1 Loss
abs_diff = tf.abs(target_rgb - pred_rgb)
l1_loss = tf.reduce_mean(abs_diff, axis=-1, keepdims=True) # [b, h, w, 1]
l1_losses.append(l1_loss)
# SSIM Loss
ssim = tf.reduce_mean(ssim_loss(target_rgb, pred_rgb), axis=-1, keepdims=True)
ssim_losses.append(ssim)
ssim_losses = tf.concat(ssim_losses, -1)
l1_losses = tf.concat(l1_losses, -1)
if scale == 0:
outputs['l1_error'] = l1_losses
# Automasking
identity_l1_losses = []
identity_ssim_losses = []
for f_i in self.params.frame_ids[1:]:
target_rgb = inputs['img']
source_rgb = inputs[f'img{f_i}']
# L1 Loss
abs_diff = tf.abs(source_rgb - target_rgb)
l1_loss = tf.reduce_mean(abs_diff, axis=-1, keepdims=True)
identity_l1_losses.append(l1_loss)
# SSIM Loss [b, h, w, 1]
ssim = tf.reduce_mean(ssim_loss(source_rgb, target_rgb), axis=-1, keepdims=True)
identity_ssim_losses.append(ssim)
identity_ssim_losses = tf.concat(identity_ssim_losses, -1)
identity_l1_losses = tf.concat(identity_l1_losses, -1)
identity_l1_losses += tf.random.normal(identity_l1_losses.shape) * 0.00001 # Break ties
identity_ssim_losses += tf.random.normal(identity_ssim_losses.shape) * 0.00001 # Break ties
combined_l1 = tf.concat((identity_l1_losses, l1_losses), axis=-1)
combined_ssim = tf.concat((identity_ssim_losses, ssim_losses), axis=-1)
combined_l1 = tf.reduce_min(combined_l1, axis=-1)
combined_ssim = tf.reduce_min(combined_ssim, axis=-1)
_ssim_loss = tf.reduce_mean(combined_ssim) * 0.85
_l1_loss = tf.reduce_mean(combined_l1) * 0.15
total_l1_loss += _l1_loss
total_ssim_loss += _ssim_loss
# Disparity smoothness
disparity = outputs[f'disparity{scale}']
mean_disp = tf.reduce_mean(disparity, [1, 2], keepdims=True)
norm_disp = disparity / (mean_disp + 1e-7)
h = self.params.input_h // (2 ** scale)
w = self.params.input_w // (2 ** scale)
color_resized = tf.image.resize(target_rgb, (h, w))
smooth = smooth_loss(norm_disp, color_resized) * 1e-3
total_smooth_loss += smooth
total_smooth_loss /= self.params.num_scales
total_ssim_loss /= self.params.num_scales
total_l1_loss /= self.params.num_scales
loss_dict['ssim'] = total_ssim_loss
loss_dict['l1'] = total_l1_loss
loss_dict['smooth'] = total_smooth_loss
loss_dict['loss'] = total_smooth_loss + total_ssim_loss + total_l1_loss
return loss_dict
def predict_pose(self, inputs):
"""
Compute pose wrt to each source frame
"""
output = {}
for f_i in self.params.frame_ids[1:]:
if f_i < 0:
pose_inputs = tf.concat([inputs[f'img{f_i}'], inputs['img']], -1)
else:
pose_inputs = tf.concat([inputs['img'], inputs[f'img{f_i}']], -1)
axisangle, translation, M = self.models['pose'](pose_inputs, invert=(f_i < 0))
output[f'axisangle{f_i}'] = axisangle
output[f'translation{f_i}'] = translation
output[f'M{f_i}'] = M
return output
def view_synthesis(self, inputs, outputs):
"""
Warped prediction based on predicted depth and pose
Args:
inputs:
'disparity': [b, h, w, 1]
'img': [b, h, w, 3]
"""
for scale in range(self.params.num_scales):
disp = outputs[f'disparity{scale}']
disp = tf.image.resize(disp, [self.params.input_h, self.params.input_w])
_, depth = disp_to_depth(disp, min_depth=MIN_DEPTH, max_depth=MAX_DEPTH)
outputs[f'depth{scale}'] = depth
for i, frame_id in enumerate(self.params.frame_ids[1:]):
source = inputs[f'img{frame_id}']
T = outputs[f'M{frame_id}']
# depth2pcl
cam_points = backproject(self.pix_coords, depth, inputs['K_inv'])
# pcl2pix
proj_mat = tf.matmul(inputs['K'], T)
pix_coords = forwardproject(cam_points, proj_mat, self.params.input_h,
self.params.input_w) # [b, h, w, 2]
# Warped source to target
projected_img = bilinear_sampler(source, pix_coords) # [b, h, w, 3]
outputs[f'pred{frame_id}{scale}'] = projected_img
return outputs
if __name__ == '__main__':
params = parser.parse_args()
output_dir = os.path.join(PROJECT_DIR, 'results', params.identifier)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print(f'Start: {params.identifier}', datetime.datetime.now())
t = Trainer(params, output_dir)
t.train()