-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path_aliases.py
355 lines (297 loc) · 9.99 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from __future__ import annotations
from typing import Callable, Optional, Union
import numpy as np
from numpy import (
# dtypes
iinfo,
finfo,
bool_ as bool,
float32,
float64,
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
complex64,
complex128,
can_cast,
result_type,
)
import dask.array as da
from ...common import _aliases, _helpers, array_namespace
from ...common._typing import (
Array,
Device,
DType,
NestedSequence,
SupportsBufferProtocol,
)
from ..._internal import get_xp
from ._info import __array_namespace_info__
isdtype = get_xp(np)(_aliases.isdtype)
unstack = get_xp(da)(_aliases.unstack)
# da.astype doesn't respect copy=True
def astype(
x: Array,
dtype: DType,
/,
*,
copy: bool = True,
device: Optional[Device] = None,
) -> Array:
"""
Array API compatibility wrapper for astype().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
# TODO: respect device keyword?
_helpers._check_device(da, device)
if not copy and dtype == x.dtype:
return x
x = x.astype(dtype)
return x.copy() if copy else x
# Common aliases
# This arange func is modified from the common one to
# not pass stop/step as keyword arguments, which will cause
# an error with dask
def arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
dtype: Optional[DType] = None,
device: Optional[Device] = None,
**kwargs,
) -> Array:
"""
Array API compatibility wrapper for arange().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
# TODO: respect device keyword?
_helpers._check_device(da, device)
args = [start]
if stop is not None:
args.append(stop)
else:
# stop is None, so start is actually stop
# prepend the default value for start which is 0
args.insert(0, 0)
args.append(step)
return da.arange(*args, dtype=dtype, **kwargs)
eye = get_xp(da)(_aliases.eye)
linspace = get_xp(da)(_aliases.linspace)
UniqueAllResult = get_xp(da)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(da)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(da)(_aliases.UniqueInverseResult)
unique_all = get_xp(da)(_aliases.unique_all)
unique_counts = get_xp(da)(_aliases.unique_counts)
unique_inverse = get_xp(da)(_aliases.unique_inverse)
unique_values = get_xp(da)(_aliases.unique_values)
permute_dims = get_xp(da)(_aliases.permute_dims)
std = get_xp(da)(_aliases.std)
var = get_xp(da)(_aliases.var)
cumulative_sum = get_xp(da)(_aliases.cumulative_sum)
cumulative_prod = get_xp(da)(_aliases.cumulative_prod)
empty = get_xp(da)(_aliases.empty)
empty_like = get_xp(da)(_aliases.empty_like)
full = get_xp(da)(_aliases.full)
full_like = get_xp(da)(_aliases.full_like)
ones = get_xp(da)(_aliases.ones)
ones_like = get_xp(da)(_aliases.ones_like)
zeros = get_xp(da)(_aliases.zeros)
zeros_like = get_xp(da)(_aliases.zeros_like)
reshape = get_xp(da)(_aliases.reshape)
matrix_transpose = get_xp(da)(_aliases.matrix_transpose)
vecdot = get_xp(da)(_aliases.vecdot)
nonzero = get_xp(da)(_aliases.nonzero)
ceil = get_xp(np)(_aliases.ceil)
floor = get_xp(np)(_aliases.floor)
trunc = get_xp(np)(_aliases.trunc)
matmul = get_xp(np)(_aliases.matmul)
tensordot = get_xp(np)(_aliases.tensordot)
sign = get_xp(np)(_aliases.sign)
# asarray also adds the copy keyword, which is not present in numpy 1.0.
def asarray(
obj: (
Array
| bool | int | float | complex
| NestedSequence[bool | int | float | complex]
| SupportsBufferProtocol
),
/,
*,
dtype: Optional[DType] = None,
device: Optional[Device] = None,
copy: Optional[Union[bool, np._CopyMode]] = None,
**kwargs,
) -> Array:
"""
Array API compatibility wrapper for asarray().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
# TODO: respect device keyword?
_helpers._check_device(da, device)
if isinstance(obj, da.Array):
if dtype is not None and dtype != obj.dtype:
if copy is False:
raise ValueError("Unable to avoid copy when changing dtype")
obj = obj.astype(dtype)
return obj.copy() if copy else obj
if copy is False:
raise NotImplementedError(
"Unable to avoid copy when converting a non-dask object to dask"
)
# copy=None to be uniform across dask < 2024.12 and >= 2024.12
# see https://github.com/dask/dask/pull/11524/
obj = np.array(obj, dtype=dtype, copy=True)
return da.from_array(obj)
from dask.array import (
# Element wise aliases
arccos as acos,
arccosh as acosh,
arcsin as asin,
arcsinh as asinh,
arctan as atan,
arctan2 as atan2,
arctanh as atanh,
left_shift as bitwise_left_shift,
right_shift as bitwise_right_shift,
invert as bitwise_invert,
power as pow,
# Other
concatenate as concat,
)
# dask.array.clip does not work unless all three arguments are provided.
# Furthermore, the masking workaround in common._aliases.clip cannot work with
# dask (meaning uint64 promoting to float64 is going to just be unfixed for
# now).
def clip(
x: Array,
/,
min: Optional[Union[int, float, Array]] = None,
max: Optional[Union[int, float, Array]] = None,
) -> Array:
"""
Array API compatibility wrapper for clip().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
def _isscalar(a):
return isinstance(a, (int, float, type(None)))
min_shape = () if _isscalar(min) else min.shape
max_shape = () if _isscalar(max) else max.shape
# TODO: This won't handle dask unknown shapes
result_shape = np.broadcast_shapes(x.shape, min_shape, max_shape)
if min is not None:
min = da.broadcast_to(da.asarray(min), result_shape)
if max is not None:
max = da.broadcast_to(da.asarray(max), result_shape)
if min is None and max is None:
return da.positive(x)
if min is None:
return astype(da.minimum(x, max), x.dtype)
if max is None:
return astype(da.maximum(x, min), x.dtype)
return astype(da.minimum(da.maximum(x, min), max), x.dtype)
def _ensure_single_chunk(x: Array, axis: int) -> tuple[Array, Callable[[Array], Array]]:
"""
Make sure that Array is not broken into multiple chunks along axis.
Returns
-------
x : Array
The input Array with a single chunk along axis.
restore : Callable[Array, Array]
function to apply to the output to rechunk it back into reasonable chunks
"""
if axis < 0:
axis += x.ndim
if x.numblocks[axis] < 2:
return x, lambda x: x
# Break chunks on other axes in an attempt to keep chunk size low
x = x.rechunk({i: -1 if i == axis else "auto" for i in range(x.ndim)})
# Rather than reconstructing the original chunks, which can be a
# very expensive affair, just break down oversized chunks without
# incurring in any transfers over the network.
# This has the downside of a risk of overchunking if the array is
# then used in operations against other arrays that match the
# original chunking pattern.
return x, lambda x: x.rechunk()
def sort(
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
) -> Array:
"""
Array API compatibility layer around the lack of sort() in Dask.
Warnings
--------
This function temporarily rechunks the array along `axis` to a single chunk.
This can be extremely inefficient and can lead to out-of-memory errors.
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
x, restore = _ensure_single_chunk(x, axis)
meta_xp = array_namespace(x._meta)
x = da.map_blocks(
meta_xp.sort,
x,
axis=axis,
meta=x._meta,
dtype=x.dtype,
descending=descending,
stable=stable,
)
return restore(x)
def argsort(
x: Array, /, *, axis: int = -1, descending: bool = False, stable: bool = True
) -> Array:
"""
Array API compatibility layer around the lack of argsort() in Dask.
See the corresponding documentation in the array library and/or the array API
specification for more details.
Warnings
--------
This function temporarily rechunks the array along `axis` into a single chunk.
This can be extremely inefficient and can lead to out-of-memory errors.
"""
x, restore = _ensure_single_chunk(x, axis)
meta_xp = array_namespace(x._meta)
dtype = meta_xp.argsort(x._meta).dtype
meta = meta_xp.astype(x._meta, dtype)
x = da.map_blocks(
meta_xp.argsort,
x,
axis=axis,
meta=meta,
dtype=dtype,
descending=descending,
stable=stable,
)
return restore(x)
# dask.array.count_nonzero does not have keepdims
def count_nonzero(
x: Array,
axis=None,
keepdims=False
) -> Array:
result = da.count_nonzero(x, axis)
if keepdims:
if axis is None:
return da.reshape(result, [1]*x.ndim)
return da.expand_dims(result, axis)
return result
__all__ = _aliases.__all__ + [
'__array_namespace_info__', 'asarray', 'astype', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'bitwise_left_shift', 'bitwise_invert',
'bitwise_right_shift', 'concat', 'pow', 'iinfo', 'finfo', 'can_cast',
'result_type', 'bool', 'float32', 'float64', 'int8', 'int16', 'int32', 'int64',
'uint8', 'uint16', 'uint32', 'uint64',
'complex64', 'complex128', 'iinfo', 'finfo',
'can_cast', 'count_nonzero', 'result_type']
_all_ignore = ["array_namespace", "get_xp", "da", "np"]